A054732 Number of inequivalent n-state 2-input 2-output automata with respect to input and output permutations.
2, 44, 2038, 176936, 20943790, 3108818680, 553255960308, 114776687721990, 27196943499525498, 7246997465494260922, 2144966703605620242622, 698192439379511764136358, 247879443355186031710674326, 95324955498172729163827175460, 39473725728022499730768584065928, 17511877093585563126312782917277602
Offset: 1
Keywords
References
- F. Harary and E. Palmer, Graphical Enumeration, 1973.
Links
- Michael A. Harrison, A census of finite automata, Canad. J. Math., 17, No. 1, (1965), 100-113. [See Theorem 6.3 (p. 108) with k = p = 2 and Table V (p. 112).]
Crossrefs
Cf. A002854.
Programs
-
PARI
A054732(n) = {local(p=vector(n)); local(q=matrix(2, 2)); local(qq=matrix(2,2)); q[1, 1] = 2; q[1, 2] = 0; q[2, 1]=0; q[2, 2]=1; qq[1, 1] = 2; qq[1, 2] = 0; qq[2, 1]=0; qq[2, 2]=1; my(S=0, A() = sum(jj=1, 2, sum(j=1, 2, prod(r=1, n, prod(s=1, 2, (sumdiv(lcm(r, s), d, if(d < n+1, d*p[d], 0)) * sumdiv(lcm(r, s), d, if(d < 3, d*qq[jj, d], 0)))^(p[r]*q[j, s]*gcd(r, s))))))/4, inc()=!forstep(i=n, 1, -1, p[i]
n, p[i]=n); next(2))); t==n && S+ = A()/prod(i=1, n, i^p[i]*p[i]!)); S} \\ This is a modification of M. F. Hasler's PARI program from A002854. - Petros Hadjicostas, Mar 08 2021
Extensions
Terms a(14)-a(16) from Petros Hadjicostas, Mar 08 2021
Comments