cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054744 p-full numbers: numbers such that if any prime p divides it, then so does p^p.

Original entry on oeis.org

1, 4, 8, 16, 27, 32, 64, 81, 108, 128, 216, 243, 256, 324, 432, 512, 648, 729, 864, 972, 1024, 1296, 1728, 1944, 2048, 2187, 2592, 2916, 3125, 3456, 3888, 4096, 5184, 5832, 6561, 6912, 7776, 8192, 8748, 10368, 11664, 12500, 13824, 15552, 15625, 16384
Offset: 1

Views

Author

James Sellers, Apr 22 2000

Keywords

Comments

A027748(a(n),k) <= A124010(a(n),k), 1<=k<=A001221(a(n)). [Reinhard Zumkeller, Apr 28 2012]
Heinz numbers of integer partitions where the multiplicity of each part k is at least prime(k). These partitions are counted by A325132. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Apr 02 2019

Examples

			8 is an element because 8 = 2^3 and 2<=3, while 25 is not an element because 25 = 5^2 and 5>2.
From _Gus Wiseman_, Apr 02 2019: (Start)
The sequence of terms together with their prime indices begins:
    1: {}
    4: {1,1}
    8: {1,1,1}
   16: {1,1,1,1}
   27: {2,2,2}
   32: {1,1,1,1,1}
   64: {1,1,1,1,1,1}
   81: {2,2,2,2}
  108: {1,1,2,2,2}
  128: {1,1,1,1,1,1,1}
  216: {1,1,1,2,2,2}
  243: {2,2,2,2,2}
  256: {1,1,1,1,1,1,1,1}
  324: {1,1,2,2,2,2}
  432: {1,1,1,1,2,2,2}
  512: {1,1,1,1,1,1,1,1,1}
  648: {1,1,1,2,2,2,2}
  729: {2,2,2,2,2,2}
  864: {1,1,1,1,1,2,2,2}
  972: {1,1,2,2,2,2,2}
(End)
		

Crossrefs

Programs

  • Haskell
    a054744 n = a054744_list !! (n-1)
    a054744_list = filter (\x -> and $
       zipWith (<=) (a027748_row x) (map toInteger $ a124010_row x)) [1..]
    -- Reinhard Zumkeller, Apr 28 2012
  • Mathematica
    Select[Range[1000],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k>=p]&] (* Gus Wiseman, Apr 02 2019 *)

Formula

If n = Product p_i^e_i then p_i<=e_i for all i.
Sum_{n>=1} 1/a(n) = Product_{p prime} 1 + 1/(p^(p-1)*(p-1)) = 1.58396891058853238595.... - Amiram Eldar, Oct 24 2020