A054744 p-full numbers: numbers such that if any prime p divides it, then so does p^p.
1, 4, 8, 16, 27, 32, 64, 81, 108, 128, 216, 243, 256, 324, 432, 512, 648, 729, 864, 972, 1024, 1296, 1728, 1944, 2048, 2187, 2592, 2916, 3125, 3456, 3888, 4096, 5184, 5832, 6561, 6912, 7776, 8192, 8748, 10368, 11664, 12500, 13824, 15552, 15625, 16384
Offset: 1
Examples
8 is an element because 8 = 2^3 and 2<=3, while 25 is not an element because 25 = 5^2 and 5>2. From _Gus Wiseman_, Apr 02 2019: (Start) The sequence of terms together with their prime indices begins: 1: {} 4: {1,1} 8: {1,1,1} 16: {1,1,1,1} 27: {2,2,2} 32: {1,1,1,1,1} 64: {1,1,1,1,1,1} 81: {2,2,2,2} 108: {1,1,2,2,2} 128: {1,1,1,1,1,1,1} 216: {1,1,1,2,2,2} 243: {2,2,2,2,2} 256: {1,1,1,1,1,1,1,1} 324: {1,1,2,2,2,2} 432: {1,1,1,1,2,2,2} 512: {1,1,1,1,1,1,1,1,1} 648: {1,1,1,2,2,2,2} 729: {2,2,2,2,2,2} 864: {1,1,1,1,1,2,2,2} 972: {1,1,2,2,2,2,2} (End)
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a054744 n = a054744_list !! (n-1) a054744_list = filter (\x -> and $ zipWith (<=) (a027748_row x) (map toInteger $ a124010_row x)) [1..] -- Reinhard Zumkeller, Apr 28 2012
-
Mathematica
Select[Range[1000],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k>=p]&] (* Gus Wiseman, Apr 02 2019 *)
Formula
If n = Product p_i^e_i then p_i<=e_i for all i.
Sum_{n>=1} 1/a(n) = Product_{p prime} 1 + 1/(p^(p-1)*(p-1)) = 1.58396891058853238595.... - Amiram Eldar, Oct 24 2020
Comments