A054766 a(n+2) = (2*n + 3)*a(n+1) + (n + 1)^2*a(n), a(0) = 1, a(1) = 0.
1, 0, 1, 5, 44, 476, 6336, 99504, 1803024, 37019664, 849418560, 21539756160, 598194037440, 18056575823040, 588622339549440, 20609136708249600, 771323264354361600, 30729606721005830400, 1298448658633614566400
Offset: 0
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..392
- K. S. Brown, Integer Sequences Related To Pi
Programs
-
Mathematica
RecurrenceTable[{a[n+2] == (2*n+3)*a[n+1] + (n+1)^2*a[n], a[0] == 1, a[1] == 0}, a, {n, 0, 25}] (* Vaclav Kotesovec, Feb 18 2017 *) t={1,0};Do[AppendTo[t,(2(n-2)+3)*t[[-1]]+(n-1)^2*t[[-2]]],{n,2,18}];t (* Indranil Ghosh, Feb 25 2017 *)
Formula
a(n) ~ (1 - Pi/4) * (1 + sqrt(2))^(n + 1/2) * n^n / (2^(1/4) * exp(n)). - Vaclav Kotesovec, Feb 18 2017
Extensions
More terms from James Sellers, May 27 2000
Definition expanded by Al Hakanson (hawkuu(AT)gmail.com), Dec 01 2008
Keyword frac added by Michel Marcus, Feb 25 2017
Comments