A054772 Triangle T(n,k) of n X n binary matrices with k=0..n^2 ones, up to rotational symmetry.
1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 10, 22, 34, 34, 22, 10, 3, 1, 1, 4, 32, 140, 464, 1092, 2016, 2860, 3238, 2860, 2016, 1092, 464, 140, 32, 4, 1, 1, 7, 78, 578, 3182, 13302, 44330, 120230, 270525, 510875, 817388, 1114548, 1300316, 1300316, 1114548, 817388
Offset: 0
Examples
[1],[1,1],[1,1,2,1,1],[1,3,10,22,34,34,22,10,3,1],...; There are 10 inequivalent 3 X 3 binary matrices with 2 ones, up to rotational symmetry: [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 1] [0 0 1] [0 1 1] [1 0 1] [1 1 0] [0 1 0] [1 0 0] ------- [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 1] [0 1 0] [0 1 0] [1 0 0] [1 0 1] [0 0 0] [0 0 1] [0 1 0] [0 0 1] [0 0 0] [1 0 0]. - reformatted. _Wolfdieter Lang_, Oct 01 2016 See a remark above: use o for 0 and + for 1. n=3: Cycle index G(3) = s[1]*(s[1]^8 + s[2]^4 + 2*s[4]^2)/4. C(3,x) = (1+x)*((1+x)^8 + (1+x^2)^4 + 2*(1+x^4)^2)/4 = 1 + 3*x + 10*x^2 + 22*x^3 + 34*x^4 + 34*x^5 + 22*x^6 + 10*x^7 + 3*x^8 + x^9. - _Wolfdieter Lang_, Oct 01 2016
References
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 42, (2.4.6).
Formula
See the comment above: T(n,k) = [x^k]C(n,x), with the counting series C(n,x) obtained from the cycle index for the n X n grid under C_4 rotations G(n;s[1],s[2],s[4]) with s[2^j] = 1 + x^(2^j) for j=0,1,2. - Wolfdieter Lang, Oct 01 2016
Comments