A054784 Integers n such that sigma(2n) - sigma(n) is a power of 2, where sigma is the sum of the divisors of n.
1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 31, 32, 42, 48, 56, 62, 64, 84, 93, 96, 112, 124, 127, 128, 168, 186, 192, 217, 224, 248, 254, 256, 336, 372, 381, 384, 434, 448, 496, 508, 512, 651, 672, 744, 762, 768, 868, 889, 896, 992, 1016, 1024, 1302, 1344, 1488
Offset: 1
Keywords
Examples
For n=12, sigma(2n) = sigma(24) = 1 + 2 + 3 + 4 + 6 + 8 + 12 + 24 = 60 and sigma(n) = sigma(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28. So sigma(2n) - sigma(n) = 60 - 28 = 32 = 2^5 is a power of 2, and therefore 12 is in the sequence. - _Michael B. Porter_, Aug 15 2016
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
N:= 10^6: # to get all terms <= N M:= select(isprime, [seq(2^i-1, i=select(isprime, [$2..ilog2(N+1)]))]): R:= map(t -> seq(2^i*t, i=0..floor(log[2](N/t))), map(convert,combinat:-powerset(M),`*`)): sort(convert(R,list)); # Robert Israel, Aug 12 2016
-
Mathematica
Sort@Select[Flatten@Outer[Times, p2 = 2^Range[0, 11], Times @@ # & /@ Subsets@Select[p2 - 1, PrimeQ]], # <= Max@p2 &] (* Ivan Neretin, Aug 12 2016 *) Select[Range[1500],IntegerQ[Log2[DivisorSigma[1,2#]-DivisorSigma[1,#]]]&] (* Harvey P. Dale, Apr 23 2019 *)
-
PARI
A209229(n) = (n && !bitand(n,n-1)); isA054784(n) = A209229(sigma(n>>valuation(n,2))); \\ Antti Karttunen, Aug 28 2021
Formula
Sum_{n>=1} 1/a(n) = 2 * Product_{p in A000668} (1 + 1/p) = 2 * A306204 = 3.1711177758... . - Amiram Eldar, Jan 11 2023
Comments