A054799 Integers n such that sigma(n+2) = sigma(n) + 2, where sigma = A000203, the sum of divisors of n.
3, 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179, 191, 197, 227, 239, 269, 281, 311, 347, 419, 431, 434, 461, 521, 569, 599, 617, 641, 659, 809, 821, 827, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1319, 1427, 1451, 1481, 1487
Offset: 1
Keywords
Examples
n = 434, divisors = {1, 2, 7, 14, 31, 62, 217, 434}, sigma(434) = 768, sigma(436) = 770; n = 8575, divisors = {1, 5, 7, 25, 35, 49, 175, 245, 343, 1225, 1715, 8575}, sigma(8575) = 12400, sigma(8577) = 12402; n = 8825, divisors = {1, 5, 25, 353, 1765, 8825}, sigma(8525) = 10974, sigma(8527) = 10976.
References
- Sivaramakrishnan, R. (1989): Classical Theory of Arithmetical Functions., M.Dekker Inc., New York, Problem 12 in Chapter V., p. 81.
Programs
-
Mathematica
Select[Range[1500],DivisorSigma[1,#+2]==DivisorSigma[1,#]+2&] (* Jayanta Basu, May 01 2013 *)
-
PARI
is(n)=sigma(n+2)==sigma(n)+2 \\ Charles R Greathouse IV, Feb 13 2013
Comments