cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A054905 Smallest composite x such that sigma(x) + 2n = sigma(x + 2n).

Original entry on oeis.org

434, 305635357, 104, 27, 195556, 65, 12, 39, 20, 56, 916, 80, 212282, 57, 44, 106645, 52, 125
Offset: 1

Views

Author

Labos Elemer May 23 2000

Keywords

Comments

a(19) > 4293000000, if it exists. - Jud McCranie, May 25 2000
a(19) > 10^11, if it exists. - Charles R Greathouse IV, Oct 26 2022

Examples

			a(5) corresponds to n=3+2=5, d=2n=10 and the smallest composite integer is 195556. The next solution is 1152136225.
		

Crossrefs

Programs

  • PARI
    a(n)=forcomposite(x=3,10^66,if(sigma(x)+2*n==sigma(x+2*n),return(x)));
    for(n=1,66,print1(a(n),", ")); \\ Joerg Arndt, Nov 15 2014
    
  • PARI
    a19(lim,startAt=39)=startAt=ceil(startAt); my(v=vectorsmall(38),i=(startAt-1)%38); forfactored(n=startAt,lim\1+38, my(t=sigma(n)); if(i++>38,i=1); if(t==v[i]+38, return(n[1]-38)); v[i]=if(vecsum(n[2][,2])>1,t,0)) \\ Charles R Greathouse IV, Oct 25 2022

Extensions

Description corrected by Jud McCranie, May 25 2000

A098974 Primes p such that q-p = 24, where q is the next prime after p.

Original entry on oeis.org

1669, 2179, 4177, 4523, 4759, 5237, 6173, 6397, 6737, 7079, 7369, 7793, 8123, 8329, 9067, 11003, 11633, 11839, 12073, 12119, 13009, 13267, 16033, 16193, 16453, 16763, 16787, 17053, 17683, 17989, 18593, 18637, 19183, 19507, 20483, 22409, 22877, 23227
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Oct 23 2004

Keywords

Comments

Lower prime of a difference of 24 between consecutive primes.
23 successive numbers after prime number p are composite. - Artur Jasinski, Jan 15 2007

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[Prime[x + 1] - Prime[x] == 24, AppendTo[a, Prime[x]]], {x, 1, 10000}]; a (* Artur Jasinski, Jan 15 2007 *)

Extensions

Entry revised by N. J. A. Sloane, Feb 13 2007

A015915 Numbers k such that sigma(k) + 8 = sigma(k+8).

Original entry on oeis.org

3, 5, 11, 23, 27, 29, 53, 59, 71, 89, 101, 131, 149, 173, 191, 233, 263, 269, 359, 389, 401, 431, 449, 479, 491, 563, 569, 593, 599, 653, 683, 701, 719, 743, 761, 821, 911, 929, 983, 1013, 1031, 1061, 1109, 1163, 1193, 1223, 1229, 1283, 1289
Offset: 1

Views

Author

Keywords

Comments

Different from A023202. Below 1000000 four composites were found [27, 1615, 1885, 218984] satisfying the "sigma(k) + 8 = sigma(k+8)" relation, together with more than 8000 primes. - Labos Elemer, May 23 2000

Examples

			sigma(27) + 8 = 48 = sigma(27+8), so 27 is in the sequence.
		

Crossrefs

Composite solutions are in A059118.

Programs

A050507 Solutions to sigma(x)+2=sigma(x+2) other than the smaller of twin primes.

Original entry on oeis.org

434, 8575, 8825
Offset: 1

Views

Author

Jud McCranie, Dec 27 1999

Keywords

Comments

This sequence together with A001359 gives the solutions of sigma(x)+2 = sigma(x+2).
No others < 4.29*10^9.
No others < 5*10^10. - Charles R Greathouse IV, Oct 19 2010
They are also the solutions of A001065(x) = A001065(x+2), where A001065(n) is the sum of proper divisors of n. - Michel Marcus, Nov 14 2014
Makowski found these 3 solutions and verified that there are none others with x <= 9998. Haukkanen extended the bound to 2*10^8. - Amiram Eldar, Dec 28 2018
a(4) > 10^13, if it exists. - Giovanni Resta, Dec 12 2019
No more terms < 2.7*10^15. - Jud McCranie, Jul 27 2025

Examples

			sigma(434)+2=770=sigma(434+2), so 434 is in the sequence.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd ed. New York: Springer-Verlag, 2004, chapter B13, p. 104.
  • R. Sivaramakrishnan, Classical Theory of Arithmetical Functions, M. Dekker Inc., New York-Basel, 1989, p. 81, Problem 12.

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], CompositeQ[#] && DivisorSigma[1, #] + 2 == DivisorSigma[1, # + 2] &] (* Amiram Eldar, Dec 28 2018 *)
  • PARI
    is(n)=sigma(n+2)==sigma(n)+2&&!isprime(n) \\ Charles R Greathouse IV, Feb 13 2013

A054902 Composite numbers n such that sigma(n)+12 = sigma(n+12).

Original entry on oeis.org

65, 170, 209, 1394, 3393, 4407, 4556, 11009, 13736, 27674, 38009, 38845, 47402, 76994, 157994, 162393, 184740, 186686, 209294, 680609, 825359, 954521, 1243574, 2205209, 3515609, 4347209, 5968502, 6539102, 6916241, 8165294, 10352294, 10595009, 10786814
Offset: 1

Views

Author

Labos Elemer, May 23 2000

Keywords

Examples

			n = 65, sigma(65)+12 = 84+12 = 96 = sigma(65+12) = sigma(77).
n = 11009, sigma(11009)+12 = 11220+12 = 11232 = sigma(11009+12) = sigma(11021).
		

Crossrefs

Complement of A046133 with respect to A015917.

Programs

  • PARI
    isok(n) = !isprime(n) && ((sigma(n)+12) == sigma(n+12)); \\ Michel Marcus, Dec 18 2013

Extensions

More terms from Jud McCranie, May 24 2000
Three more terms from Michel Marcus, Dec 18 2013

A054904 x = a(n) is the smallest composite number such that sigma(x+6n) = sigma(x)+6n, where sigma = A000203.

Original entry on oeis.org

104, 65, 20, 80, 44, 125, 45, 63, 40, 99, 56, 70, 296, 125, 88, 110, 104, 145, 212, 182, 80, 170, 333, 105, 369, 185, 184, 135, 180, 301, 356, 185, 1859, 329, 176, 195, 4916, 434, 612, 287, 140, 185, 776, 255, 524, 413, 344, 205, 272, 329, 567, 215, 320, 469
Offset: 1

Views

Author

Labos Elemer, May 23 2000

Keywords

Comments

If sigma(x+d) = sigma(x)+d and d = 6k, then composite solutions seem to be more frequent and arise sooner.
a(725) > 3*10^11 (if it exists). - Donovan Johnson, Sep 23 2013

Examples

			n = 20, 6n = 120, a(20) = 182, sigma(182)+120 = 336+120 = 456 = sigma(182+120) = sigma(302).
		

Crossrefs

Programs

  • Mathematica
    Table[x = 4; While[Nand[CompositeQ@ x, DivisorSigma[1, x + 6 n] == DivisorSigma[1, x] + 6 n], x++]; x, {n, 54}] (* Michael De Vlieger, Feb 18 2017 *)
  • PARI
    /* finds first 696 terms */ mx=7695851; s=vector(mx); for(j=4, mx, if(isprime(j)==0, s[j]=sigma(j))); for(n=1, 696, n6=n*6; for(x=4, 7691753, if(s[x]>0, if(s[x+n6]==s[x]+n6, write("b054904.txt", n " " x); next(2))))) /* Donovan Johnson, Sep 23 2013 */

Formula

sigma(x+6n) = sigma(x)+6n, a(n) = min(x) and it is composite.

A054903 Composite numbers n such that sigma(n)+6 = sigma(n+6), where sigma=A000203.

Original entry on oeis.org

104, 147, 596, 1415, 4850, 5337, 370047, 1630622, 35020303, 120221396, 3954451796, 742514284703
Offset: 1

Views

Author

Labos Elemer, May 23 2000

Keywords

Comments

Complement of A023201 with respect to A015914.
Intersection of A015914 and A018252.
Below 1000000 there are only 7 such composite numbers, compared with more than 16000 primes.
a(13) > 10^13. - Giovanni Resta, Jul 11 2013

Examples

			n=104, sigma(104)+6 = 210+6 = 216 = sigma(104+6) = sigma(110).
a(4) = 1415 = 5*283, 1415+6 = 1421 = 7*7*29:
sigma(1415) = 1+5+283+1415 = 1704,
sigma(1421) = 1+7+29+49+203+1421 = 1710 = sigma(1415)+6.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 104, p. 37, Ellipses, Paris 2008.

Crossrefs

Programs

Extensions

More terms from Jud McCranie, May 25 2000
New definition from Reinhard Zumkeller, Jan 27 2009
Edited by N. J. A. Sloane, Jan 31 2009 at the suggestion of R. J. Mathar.
a(12) from Giovanni Resta, Jul 11 2013

A054987 Smallest composite x such that sigma(x+2^n) = sigma(x) + 2^n.

Original entry on oeis.org

434, 305635357, 27, 39, 106645, 69, 2275, 63, 6475, 249, 7735, 3703, 10803, 16383, 58869, 51181, 87951, 1695, 9579, 105237, 98829, 1143369, 789609, 11625, 14038691, 178975, 48627929, 1881333, 402373721, 2667945, 82915599, 353195221, 70106601
Offset: 1

Views

Author

Labos Elemer, May 29 2000

Keywords

Comments

The sequence is initiated by smallest of A015915. Special primes of A023202, A049488-A049491 also satisfy the Sigma[p+2^w]=Sigma[p]+2^w relation

Examples

			For the term 69: Sigma[69+2^6] = Sigma[133] = 1+7+19+133 = Sigma[69]+64 = (1+3+23+69)+64 = 160.
		

Crossrefs

Programs

  • Mathematica
    Table[ Select[ Range[ 1, 110000 ], Equal[ EulerPhi[ #+2^k ]-EulerPhi[ # ]-2^k, 0 ] &&!PrimeQ[ # ]& ], {k, 1, 22} ]
  • PARI
    a(n)=my(N=2^n,x=3); while(isprime(x++) || sigma(x+N) != sigma(x)+N,); x \\ Charles R Greathouse IV, Mar 11 2014

Extensions

More terms from Labos Elemer, Aug 14 2003
a(21) corrected and a(27)-a(33) from Donovan Johnson, Nov 30 2008

A054982 a(n) = least composite number such that sigma(a(n)+n!) = sigma(a(n))+n! where sigma() = A000203.

Original entry on oeis.org

434, 104, 80, 182, 427, 1727, 4147, 7163, 42031, 165841, 569257, 2683909, 10040081, 39094849, 155533969, 717519401, 3041377519, 16076525809, 71749935913
Offset: 2

Views

Author

Labos Elemer, May 29 2000

Keywords

Comments

a(21) <= 328823468719, a(22) <= 1542201899569, a(23) <= 9325753929619. - Donovan Johnson, Sep 22 2013

Examples

			a(7) = 1727 = 11*157, 4 divisors, sigma(1727)+5040 = 1896+5040 = 6936, sigma(1727+5040) = sigma(6767) = 1+67+101+6767 = 6936.
a(2) = A054799(24) = 434, a(3) = A015914(19) = 104, the first composites in that series.
		

Crossrefs

Programs

  • Mathematica
    L = {}; Do[i = 1; While[ ! ((Plus @@ Divisors[i + j! ] == j! + Plus @@ Divisors[i]) && ! PrimeQ[i]), i++ ]; L = Append[L, i], {j, 2, 13}]; L (from Vit Planocka)

Extensions

More terms from Vit Planocka (planocka(AT)mistral.cz), Sep 22 2003
a(14)-a(19) from Donovan Johnson, Nov 30 2008
a(20) from Donovan Johnson, Sep 19 2013

A054984 Composite numbers k such that sigma(k + 6!) = sigma(k + 720) = sigma(k) + 720.

Original entry on oeis.org

427, 553, 595, 623, 737, 871, 913, 923, 1199, 1207, 1241, 1507, 1582, 1817, 1848, 2193, 2226, 2337, 2398, 2407, 2553, 2561, 2728, 2758, 2929, 3016, 3115, 3248, 3346, 3502, 3503, 3598, 3705, 3762, 4171, 4293, 4343, 4462, 4587, 4633, 4841, 4867, 4984
Offset: 1

Views

Author

Labos Elemer, May 29 2000

Keywords

Examples

			553 is a term because sigma(553) + 720 = 640 + 720 = 1360 = sigma(553 + 720) = sigma(1273) = 1 + 19 + 67 + 1273.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], CompositeQ[#] && Differences@ DivisorSigma[1, {#, # + 720}] == {720} &] (* Amiram Eldar, Mar 09 2025 *)
  • PARI
    isok(k) = !isprime(k) && sigma(k + 720) == sigma(k) + 720; \\ Amiram Eldar, Mar 09 2025
Showing 1-10 of 18 results. Next