cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A015917 Numbers k such that sigma(k) + 12 = sigma(k+12).

Original entry on oeis.org

5, 7, 11, 17, 19, 29, 31, 41, 47, 59, 61, 65, 67, 71, 89, 97, 101, 127, 137, 139, 151, 167, 170, 179, 181, 199, 209, 211, 227, 229, 239, 251, 257, 269, 271, 281, 337, 347, 367, 389, 397, 409, 419, 421, 431, 449, 467, 479, 487, 491, 509, 557, 587
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A000203.
Union of A046133 and A054902.

Programs

  • Mathematica
    Select[Range[600],DivisorSigma[1,#]+12==DivisorSigma[1,#+12]&] (* Harvey P. Dale, Oct 14 2012 *)
  • PARI
    is(n)=sigma(n)+12==sigma(n+12) \\ Charles R Greathouse IV, Mar 09 2014

A056775 Numbers k such that phi(k+12) = phi(k) + 12.

Original entry on oeis.org

5, 7, 11, 17, 19, 29, 31, 41, 45, 47, 59, 61, 65, 67, 71, 80, 89, 97, 99, 101, 112, 117, 127, 135, 137, 139, 151, 167, 171, 176, 179, 181, 196, 199, 207, 209, 211, 227, 229, 239, 251, 257, 269, 271, 272, 279, 281, 294, 304, 310, 312, 337, 347, 367, 369, 389
Offset: 1

Views

Author

Labos Elemer, Aug 17 2000

Keywords

Comments

Prime solutions are in A046133, common with primes in A015917.

Examples

			65 is a term since phi(65) = 48, phi(65+12) = phi(77) = 60 = 48 + 12.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[400],EulerPhi[#]+12==EulerPhi[#+12]&] (* Harvey P. Dale, Jan 21 2013 *)

A056776 Composite numbers k such that phi(k+12) = phi(k) + 12.

Original entry on oeis.org

45, 65, 80, 99, 112, 117, 135, 171, 176, 196, 207, 209, 272, 279, 294, 304, 310, 312, 369, 406, 429, 477, 496, 531, 592, 656, 657, 711, 752, 801, 909, 927, 944, 981, 1014, 1072, 1078, 1179, 1251, 1359, 1424, 1557, 1611, 1629, 1712, 1719, 1744, 1786, 1791
Offset: 1

Views

Author

Labos Elemer, Aug 17 2000

Keywords

Comments

There are common cases with A054902.

Examples

			656 is a term since it is composite and phi(656) = 320, phi(656+12) = phi(668) = 332 = 320 + 12.
657 is a term since it is composite and phi(657) = 432, phi(657+12) = phi(669) = 444 = 432 + 12.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1800], CompositeQ[#] && EulerPhi[# + 12] == EulerPhi[#] + 12 &] (* Amiram Eldar, Mar 01 2020 *)

A055036 Min[x] composite zero site for sigma(x+6^n) - sigma(x) - 6^n.

Original entry on oeis.org

104, 125, 195, 415, 2743, 2935, 3535, 19735, 22645, 108703, 977353, 1921033, 2523433, 2425175, 4227575, 85969345, 32606935, 224917033, 1362833713, 716210677, 1557843865, 6226853857, 20369543065
Offset: 1

Views

Author

Labos Elemer, Jun 01 2000

Keywords

Examples

			n = 6: d = 6^6 = 46656, a(n) = a(6) = 2935 because sigma(2935) + 46656 = 1 + 5 + 587 + 2935 + 46656 = sigma(2935 + 46656) = sigma(49591) = 1 + 101 + 491 + 49591 = 50184.
		

Crossrefs

Programs

  • Mathematica
    L = {}; Do[i = 1; While[ ! ((Plus @@ Divisors[i + 6^j] == 6^j + Plus @@ Divisors[i]) && ! PrimeQ[i]), i++ ]; L = Append[L, i], {j, 1, 11}]; L (from Vit Planocka)

Formula

a(n) = Min(x) solution for A000203(x+A000400(n)) = A000203(x) + A000400(n) Diophantine equation.

Extensions

One more term from Vit Planocka (planocka(AT)mistral.cz), Sep 23 2003
a(12)-a(23) from Donovan Johnson, Nov 30 2008

A056777 Composite numbers k such that both phi(k+12) = phi(k) + 12 and sigma(k+12) = sigma(k) + 12.

Original entry on oeis.org

65, 209, 11009, 38009, 680609, 2205209, 3515609, 4347209, 10595009, 12006209, 31979009, 89019209, 169130009, 244766009, 247590209, 258084209, 325622009, 357777209, 377330609, 441630209, 496175609, 640343009, 1006475609
Offset: 1

Views

Author

Labos Elemer, Aug 17 2000

Keywords

Comments

It is easy to show that if p, p+2, p+6 and p+8 are all prime (a prime quadruple as defined in A007530, which lists the values of p) with x=p(p+8), x+12=(p+2)(p+6), then x is in the sequence. I conjecture that all members of the sequence are of this form. - Jud McCranie, Oct 11 2000
Numbers so far are all congruent to 65 (mod 72). - Ralf Stephan, Jul 07 2003

Examples

			k = 209 = 11*19, k + 12 = 221 = 13*17, phi(k + 12) = 192 = 180 + 12 = phi(k) + 12, also sigma(221) = 252 = sigma(209) + 12 = 240 + 12.
phi(65) + 12 = 60 = phi(65 + 12), sigma(65) + 12 = 96 = sigma(65 + 12), 65 is composite.
		

Crossrefs

Programs

  • PARI
    isok(n) = !isprime(n) && (sigma(n+12) == sigma(n)+12) && (eulerphi(n+12)==eulerphi(n)+12); \\ Michel Marcus, Jul 14 2017

Extensions

More terms from Jud McCranie, Oct 11 2000
Showing 1-5 of 5 results.