cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A015914 Numbers k such that sigma(k) + 6 = sigma(k+6).

Original entry on oeis.org

5, 7, 11, 13, 17, 23, 31, 37, 41, 47, 53, 61, 67, 73, 83, 97, 101, 103, 104, 107, 131, 147, 151, 157, 167, 173, 191, 193, 223, 227, 233, 251, 257, 263, 271, 277, 307, 311, 331, 347, 353, 367, 373, 383, 433, 443, 457, 461, 503, 541, 557, 563, 571
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A000203.
See A054903 for nonprimes. - Reinhard Zumkeller, Jan 27 2009

Programs

  • Mathematica
    Select[Range[50000], DivisorSigma[1, #] + 6==DivisorSigma[1, # + 6] &] (* Vincenzo Librandi, Mar 10 2014 *)

A054904 x = a(n) is the smallest composite number such that sigma(x+6n) = sigma(x)+6n, where sigma = A000203.

Original entry on oeis.org

104, 65, 20, 80, 44, 125, 45, 63, 40, 99, 56, 70, 296, 125, 88, 110, 104, 145, 212, 182, 80, 170, 333, 105, 369, 185, 184, 135, 180, 301, 356, 185, 1859, 329, 176, 195, 4916, 434, 612, 287, 140, 185, 776, 255, 524, 413, 344, 205, 272, 329, 567, 215, 320, 469
Offset: 1

Views

Author

Labos Elemer, May 23 2000

Keywords

Comments

If sigma(x+d) = sigma(x)+d and d = 6k, then composite solutions seem to be more frequent and arise sooner.
a(725) > 3*10^11 (if it exists). - Donovan Johnson, Sep 23 2013

Examples

			n = 20, 6n = 120, a(20) = 182, sigma(182)+120 = 336+120 = 456 = sigma(182+120) = sigma(302).
		

Crossrefs

Programs

  • Mathematica
    Table[x = 4; While[Nand[CompositeQ@ x, DivisorSigma[1, x + 6 n] == DivisorSigma[1, x] + 6 n], x++]; x, {n, 54}] (* Michael De Vlieger, Feb 18 2017 *)
  • PARI
    /* finds first 696 terms */ mx=7695851; s=vector(mx); for(j=4, mx, if(isprime(j)==0, s[j]=sigma(j))); for(n=1, 696, n6=n*6; for(x=4, 7691753, if(s[x]>0, if(s[x+n6]==s[x]+n6, write("b054904.txt", n " " x); next(2))))) /* Donovan Johnson, Sep 23 2013 */

Formula

sigma(x+6n) = sigma(x)+6n, a(n) = min(x) and it is composite.

A084293 a(n) = 2n + A054905(n).

Original entry on oeis.org

436, 305635361, 110, 35, 195566, 77, 26, 55, 38, 76, 938, 104, 212308, 85, 74, 106677, 86, 161
Offset: 1

Views

Author

Labos Elemer, May 26 2003

Keywords

Comments

The sequence begins 436, 305635361, 110, 35, 195566, 77, 26, 55, 38, 76, 938, 104, 212308, 85, 74, 106677, 86, 161, ?, 91, 87, 92, 122, 111, 1585396, 145, 94, 76627, 10283, 159, 772, 133, 122, 412, 194, 142, 964, 205, 374, 925, 6725, 209, ?, 1015, 178, ?, ?, 206, 146, ?, ..., where the other missing terms (designated by "?") are unknown, if they exist (see also A206768).

Examples

			To terms of A054905, where sigma(x+2n)=sigma(x)+2n replacing x+2n=y,x=y-2n, we get sigma(y)-2n=sigma(y-2n);
For several analogous sequences, the corresponding "mirror-solutions" can be easily constructed. See: e.g. A015913-A015918; A050507, A054799, A054903-A054906; A054982-A054987; A059118; A055009, A055458, A063500, etc.
		

Crossrefs

Cf. A054905.

Formula

Composite x satisfying sigma(x-2n) = sigma(x) - 2n.

A084292 a(n) = 6n + A054904(n).

Original entry on oeis.org

110, 77, 38, 104, 74, 161, 87, 111, 94, 159, 122, 142, 374, 209, 178, 206, 206, 253, 326, 302, 206, 302, 471, 249, 519, 341, 346, 303, 354, 481, 542, 377, 2057, 533, 386, 411, 5138, 662, 846, 527, 386, 437, 1034, 519, 794, 689, 626, 493, 566, 629, 873, 527, 638
Offset: 1

Views

Author

Labos Elemer, May 26 2003

Keywords

Comments

Composite solutions y to sigma(y-6n) = sigma(y) - 6n. For terms x of A054904, where sigma(x+6n) = sigma(x) + 6n, replacing x+6n = y, x = y-6n, we get sigma(y) - 6n = sigma(y-6n).

Crossrefs

Cf. A000203 (sigma), A054904, A084293.
For several analogous sequences such corresponding "mirror-solutions" can be easily constructed. See, e.g., A015913-A015918, A050507, A054799, A054903-A054906, A054982-A054987, A059118, A055009, A055458, A063500, etc.
Showing 1-4 of 4 results.