cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A206768 a(n) = smallest number k such that sigma(k-n) = sigma(k) - n, with k > n+1.

Original entry on oeis.org

3, 5, 5, 7, 7, 11, 81, 11, 11, 13, 13, 17, 4431, 17, 17, 19, 19, 23, 25, 23, 23, 29
Offset: 1

Views

Author

Paolo P. Lava, Jan 10 2013

Keywords

Comments

This sequence begins
3, 5, 5, 7, 7, 11, 81, 11, 11, 13, 13, 17, 4431, 17, 17, 19, 19, 23, 25, 23, 23, 29, ?, 29, ?, 29, 29, 31, 31, 37, ?, 37, 51, 37, 37, 41, 81, 41, 41, 43, 43, 47, ?, 47, 47, 53, ?, 53, 3364, 53, 53, 59, ?, 59, ?, 59, 59, 61, 61, 67, ?, 67, ?, 67, 67, 71, ?, 71, 71, 73, 73, 79, 91, 79, ?, 79, 79, 83, ?, 83, 83, 89, ?, 89, ?, 89, 89, 101, ?, 97, ?, 97, 125, 97, 97, 101, ?, 101, 101, 103, 103, 107... where the other missing terms (designated by "?") are > 10^6, if they exist.
For a given n, n being even, among the integers k satisfying the property sigma(k-n) = sigma(k)-n, we will find prime numbers p, such that p and p-n are primes. This is because in that case sigma(p-n) = (p-n)+1 = (p+1)-n = sigma(p)-n. For instance, when n is even, for n=2 to 14, a(n) is the first term of A006512, A046132, A046117, A092402, A092146, A092216, A098933. If we restrict to composite numbers, then see A084293. - Michel Marcus, Feb 16 2013
For the missing terms mentioned in first comment, a(n) is > 10^7. - Michel Marcus, Sep 21 2013

Examples

			a(13) = 4431 because 4431 is the minimum number for which sigma(4431-13) = sigma(4418)= 6771 and sigma(4431) - 13 = 6784 -13 = 6771.
a(19) = 25 because 25 is the minimum number for which sigma(25-19) = sigma(6) = 12 and sigma(25) - 19 = 31 -19 = 12.
		

Crossrefs

Cf. A015886.

Programs

  • Maple
    A206768:=proc(q)
    local k,n;
    for n from 1 to q do
      for k from n+1 to q do
      if sigma(-n+k)=sigma(k)-n then print(k); break; fi;
    od; od; end:
    A206768(1000000000);

A084292 a(n) = 6n + A054904(n).

Original entry on oeis.org

110, 77, 38, 104, 74, 161, 87, 111, 94, 159, 122, 142, 374, 209, 178, 206, 206, 253, 326, 302, 206, 302, 471, 249, 519, 341, 346, 303, 354, 481, 542, 377, 2057, 533, 386, 411, 5138, 662, 846, 527, 386, 437, 1034, 519, 794, 689, 626, 493, 566, 629, 873, 527, 638
Offset: 1

Views

Author

Labos Elemer, May 26 2003

Keywords

Comments

Composite solutions y to sigma(y-6n) = sigma(y) - 6n. For terms x of A054904, where sigma(x+6n) = sigma(x) + 6n, replacing x+6n = y, x = y-6n, we get sigma(y) - 6n = sigma(y-6n).

Crossrefs

Cf. A000203 (sigma), A054904, A084293.
For several analogous sequences such corresponding "mirror-solutions" can be easily constructed. See, e.g., A015913-A015918, A050507, A054799, A054903-A054906, A054982-A054987, A059118, A055009, A055458, A063500, etc.
Showing 1-2 of 2 results.