cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A054799 Integers n such that sigma(n+2) = sigma(n) + 2, where sigma = A000203, the sum of divisors of n.

Original entry on oeis.org

3, 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179, 191, 197, 227, 239, 269, 281, 311, 347, 419, 431, 434, 461, 521, 569, 599, 617, 641, 659, 809, 821, 827, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1319, 1427, 1451, 1481, 1487
Offset: 1

Views

Author

Labos Elemer, May 22 2000

Keywords

Comments

Only 3 composite numbers are known: 434, 8575, 8825. This sequence is the union of A050507 and A001359.
The terms are also the solutions of A001065(x) = A001065(x+2), where A001065(n) is the sum of proper divisors of n. - Michel Marcus, Nov 14 2014

Examples

			n = 434, divisors = {1, 2, 7, 14, 31, 62, 217, 434}, sigma(434) = 768, sigma(436) = 770; n = 8575, divisors = {1, 5, 7, 25, 35, 49, 175, 245, 343, 1225, 1715, 8575}, sigma(8575) = 12400, sigma(8577) = 12402; n = 8825, divisors = {1, 5, 25, 353, 1765, 8825}, sigma(8525) = 10974, sigma(8527) = 10976.
		

References

  • Sivaramakrishnan, R. (1989): Classical Theory of Arithmetical Functions., M.Dekker Inc., New York, Problem 12 in Chapter V., p. 81.

Crossrefs

Programs

  • Mathematica
    Select[Range[1500],DivisorSigma[1,#+2]==DivisorSigma[1,#]+2&] (* Jayanta Basu, May 01 2013 *)
  • PARI
    is(n)=sigma(n+2)==sigma(n)+2 \\ Charles R Greathouse IV, Feb 13 2013

A056774 Composite n such that phi(n+2) = phi(n)+2.

Original entry on oeis.org

6, 12, 14, 18, 20, 44, 62, 92, 116, 164, 212, 254, 332, 356, 452, 524, 692, 716, 764, 932, 956, 1004, 1124, 1172, 1436, 1676, 1724, 1772, 1964, 2036, 2372, 2564, 2612, 2636, 2732, 2876, 2972, 3044, 3236, 3644, 3812, 4052, 4076, 4124, 4196, 4412, 4892
Offset: 1

Views

Author

Labos Elemer, Aug 17 2000

Keywords

Comments

Below 100000 no common composite solutions with sigma(n+2)=sigma(n)+2, while prime solutions are common.
phi(x)+2=phi(x+2) is equivalent to cototient(x+2)=cototient(x), so also defines closest numbers with identical value of cototients (A051953), either primes or composites.

Examples

			n=254, phi(254+2) = phi(256) = 128 = phi(254)+2 = 126+2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000],CompositeQ[#]&&EulerPhi[#]+2==EulerPhi[#+2]&] (* Harvey P. Dale, Jul 10 2017 *)
  • PARI
    isok(n) = !isprime(n) && (eulerphi(n+2) == eulerphi(n)+2); \\ Michel Marcus, Aug 30 2019

A084293 a(n) = 2n + A054905(n).

Original entry on oeis.org

436, 305635361, 110, 35, 195566, 77, 26, 55, 38, 76, 938, 104, 212308, 85, 74, 106677, 86, 161
Offset: 1

Views

Author

Labos Elemer, May 26 2003

Keywords

Comments

The sequence begins 436, 305635361, 110, 35, 195566, 77, 26, 55, 38, 76, 938, 104, 212308, 85, 74, 106677, 86, 161, ?, 91, 87, 92, 122, 111, 1585396, 145, 94, 76627, 10283, 159, 772, 133, 122, 412, 194, 142, 964, 205, 374, 925, 6725, 209, ?, 1015, 178, ?, ?, 206, 146, ?, ..., where the other missing terms (designated by "?") are unknown, if they exist (see also A206768).

Examples

			To terms of A054905, where sigma(x+2n)=sigma(x)+2n replacing x+2n=y,x=y-2n, we get sigma(y)-2n=sigma(y-2n);
For several analogous sequences, the corresponding "mirror-solutions" can be easily constructed. See: e.g. A015913-A015918; A050507, A054799, A054903-A054906; A054982-A054987; A059118; A055009, A055458, A063500, etc.
		

Crossrefs

Cf. A054905.

Formula

Composite x satisfying sigma(x-2n) = sigma(x) - 2n.

A322668 Numbers k such that (k, k+2) are not twin primes yet sigma(k+2)/d(k+2) - sigma(k)/d(k) = 1.

Original entry on oeis.org

1, 350, 6497, 12317, 133787, 181427, 404471, 439097, 485237, 501182, 549378, 1410119, 2696807, 6220607, 6827369, 6954767, 9770027, 10302419, 10449347, 10887977, 11014007, 16745387, 18959111, 25883519, 27334469, 39508037, 40311149, 40551617, 42561437, 44592209
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

A variation of A050507 with average of the divisors instead of their sum.

Crossrefs

Cf. A000005 (number of divisors), A000203 (sum of divisors).

Programs

  • Mathematica
    f[n_] := DivisorSigma[1, n]/DivisorSigma[0, n]; aQ[n_] := f[n + 2] - f[n] ==  1 && !(PrimeQ[n] && PrimeQ[n + 2]); Select[Range[1000000], aQ]
  • PARI
    isok(k) = !(isprime(k) && isprime(k+2)) && (sigma(k+2)/numdiv(k+2) - sigma(k)/numdiv(k) == 1); \\ Michel Marcus, Jan 22 2019

A084292 a(n) = 6n + A054904(n).

Original entry on oeis.org

110, 77, 38, 104, 74, 161, 87, 111, 94, 159, 122, 142, 374, 209, 178, 206, 206, 253, 326, 302, 206, 302, 471, 249, 519, 341, 346, 303, 354, 481, 542, 377, 2057, 533, 386, 411, 5138, 662, 846, 527, 386, 437, 1034, 519, 794, 689, 626, 493, 566, 629, 873, 527, 638
Offset: 1

Views

Author

Labos Elemer, May 26 2003

Keywords

Comments

Composite solutions y to sigma(y-6n) = sigma(y) - 6n. For terms x of A054904, where sigma(x+6n) = sigma(x) + 6n, replacing x+6n = y, x = y-6n, we get sigma(y) - 6n = sigma(y-6n).

Crossrefs

Cf. A000203 (sigma), A054904, A084293.
For several analogous sequences such corresponding "mirror-solutions" can be easily constructed. See, e.g., A015913-A015918, A050507, A054799, A054903-A054906, A054982-A054987, A059118, A055009, A055458, A063500, etc.

A217259 Numbers n such that sigma(n+1) - sigma(n-1) = 2; sigma(n) = A000203(n) = sum of divisors of n.

Original entry on oeis.org

4, 6, 12, 18, 30, 42, 60, 72, 102, 108, 138, 150, 180, 192, 198, 228, 240, 270, 282, 312, 348, 420, 432, 435, 462, 522, 570, 600, 618, 642, 660, 810, 822, 828, 858, 882, 1020, 1032, 1050, 1062, 1092, 1152, 1230, 1278, 1290, 1302, 1320, 1428, 1452, 1482, 1488
Offset: 1

Views

Author

Jaroslav Krizek, Mar 17 2013

Keywords

Comments

Also numbers n such that antisigma(n+1) - antisigma(n-1) = 2*n - 1.
Antisigma(n) = A024816(n) = sum of nondivisors of n.
Union of A014574 (average of twin prime pairs) and sequence 435, 8576, 8826, … (= all terms < 100000).
If n = average of twin prime pairs (q < p) then antisigma(p) - antisigma(q) = 2*n - 1 = p + q - 1.
No term found below 2*10^9 to continue sequence 435, 8576, 8826, ... - Michel Marcus, Mar 19 2013

Examples

			Number 435 is in sequence because antisigma(436) - antisigma(434) = 94496 - 93627 = 869 = 2*435 - 1.
		

Crossrefs

Equals A054799 + 1. - Michel Marcus, May 21 2018

Programs

Showing 1-6 of 6 results.