A054799
Integers n such that sigma(n+2) = sigma(n) + 2, where sigma = A000203, the sum of divisors of n.
Original entry on oeis.org
3, 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179, 191, 197, 227, 239, 269, 281, 311, 347, 419, 431, 434, 461, 521, 569, 599, 617, 641, 659, 809, 821, 827, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1319, 1427, 1451, 1481, 1487
Offset: 1
n = 434, divisors = {1, 2, 7, 14, 31, 62, 217, 434}, sigma(434) = 768, sigma(436) = 770; n = 8575, divisors = {1, 5, 7, 25, 35, 49, 175, 245, 343, 1225, 1715, 8575}, sigma(8575) = 12400, sigma(8577) = 12402; n = 8825, divisors = {1, 5, 25, 353, 1765, 8825}, sigma(8525) = 10974, sigma(8527) = 10976.
- Sivaramakrishnan, R. (1989): Classical Theory of Arithmetical Functions., M.Dekker Inc., New York, Problem 12 in Chapter V., p. 81.
A056774
Composite n such that phi(n+2) = phi(n)+2.
Original entry on oeis.org
6, 12, 14, 18, 20, 44, 62, 92, 116, 164, 212, 254, 332, 356, 452, 524, 692, 716, 764, 932, 956, 1004, 1124, 1172, 1436, 1676, 1724, 1772, 1964, 2036, 2372, 2564, 2612, 2636, 2732, 2876, 2972, 3044, 3236, 3644, 3812, 4052, 4076, 4124, 4196, 4412, 4892
Offset: 1
n=254, phi(254+2) = phi(256) = 128 = phi(254)+2 = 126+2.
-
Select[Range[5000],CompositeQ[#]&&EulerPhi[#]+2==EulerPhi[#+2]&] (* Harvey P. Dale, Jul 10 2017 *)
-
isok(n) = !isprime(n) && (eulerphi(n+2) == eulerphi(n)+2); \\ Michel Marcus, Aug 30 2019
Original entry on oeis.org
436, 305635361, 110, 35, 195566, 77, 26, 55, 38, 76, 938, 104, 212308, 85, 74, 106677, 86, 161
Offset: 1
To terms of A054905, where sigma(x+2n)=sigma(x)+2n replacing x+2n=y,x=y-2n, we get sigma(y)-2n=sigma(y-2n);
For several analogous sequences, the corresponding "mirror-solutions" can be easily constructed. See: e.g. A015913-A015918; A050507, A054799, A054903-A054906; A054982-A054987; A059118; A055009, A055458, A063500, etc.
A322668
Numbers k such that (k, k+2) are not twin primes yet sigma(k+2)/d(k+2) - sigma(k)/d(k) = 1.
Original entry on oeis.org
1, 350, 6497, 12317, 133787, 181427, 404471, 439097, 485237, 501182, 549378, 1410119, 2696807, 6220607, 6827369, 6954767, 9770027, 10302419, 10449347, 10887977, 11014007, 16745387, 18959111, 25883519, 27334469, 39508037, 40311149, 40551617, 42561437, 44592209
Offset: 1
-
f[n_] := DivisorSigma[1, n]/DivisorSigma[0, n]; aQ[n_] := f[n + 2] - f[n] == 1 && !(PrimeQ[n] && PrimeQ[n + 2]); Select[Range[1000000], aQ]
-
isok(k) = !(isprime(k) && isprime(k+2)) && (sigma(k+2)/numdiv(k+2) - sigma(k)/numdiv(k) == 1); \\ Michel Marcus, Jan 22 2019
Original entry on oeis.org
110, 77, 38, 104, 74, 161, 87, 111, 94, 159, 122, 142, 374, 209, 178, 206, 206, 253, 326, 302, 206, 302, 471, 249, 519, 341, 346, 303, 354, 481, 542, 377, 2057, 533, 386, 411, 5138, 662, 846, 527, 386, 437, 1034, 519, 794, 689, 626, 493, 566, 629, 873, 527, 638
Offset: 1
For several analogous sequences such corresponding "mirror-solutions" can be easily constructed. See, e.g.,
A015913-
A015918,
A050507,
A054799,
A054903-
A054906,
A054982-
A054987,
A059118,
A055009,
A055458,
A063500, etc.
A217259
Numbers n such that sigma(n+1) - sigma(n-1) = 2; sigma(n) = A000203(n) = sum of divisors of n.
Original entry on oeis.org
4, 6, 12, 18, 30, 42, 60, 72, 102, 108, 138, 150, 180, 192, 198, 228, 240, 270, 282, 312, 348, 420, 432, 435, 462, 522, 570, 600, 618, 642, 660, 810, 822, 828, 858, 882, 1020, 1032, 1050, 1062, 1092, 1152, 1230, 1278, 1290, 1302, 1320, 1428, 1452, 1482, 1488
Offset: 1
Number 435 is in sequence because antisigma(436) - antisigma(434) = 94496 - 93627 = 869 = 2*435 - 1.
Showing 1-6 of 6 results.
Comments