cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A023202 Primes p such that p + 8 is also prime.

Original entry on oeis.org

3, 5, 11, 23, 29, 53, 59, 71, 89, 101, 131, 149, 173, 191, 233, 263, 269, 359, 389, 401, 431, 449, 479, 491, 563, 569, 593, 599, 653, 683, 701, 719, 743, 761, 821, 911, 929, 983, 1013, 1031, 1061, 1109, 1163, 1193, 1223, 1229, 1283, 1289, 1319, 1373, 1439
Offset: 1

Views

Author

Keywords

Comments

All terms > 3 are congruent to 5 mod 6 (observation by Zak Seidov in SeqFan). Thus each corresponding p + 8 is congruent to 1 mod 6. - Rick L. Shepherd, Mar 25 2023

Crossrefs

Programs

A054905 Smallest composite x such that sigma(x) + 2n = sigma(x + 2n).

Original entry on oeis.org

434, 305635357, 104, 27, 195556, 65, 12, 39, 20, 56, 916, 80, 212282, 57, 44, 106645, 52, 125
Offset: 1

Views

Author

Labos Elemer May 23 2000

Keywords

Comments

a(19) > 4293000000, if it exists. - Jud McCranie, May 25 2000
a(19) > 10^11, if it exists. - Charles R Greathouse IV, Oct 26 2022

Examples

			a(5) corresponds to n=3+2=5, d=2n=10 and the smallest composite integer is 195556. The next solution is 1152136225.
		

Crossrefs

Programs

  • PARI
    a(n)=forcomposite(x=3,10^66,if(sigma(x)+2*n==sigma(x+2*n),return(x)));
    for(n=1,66,print1(a(n),", ")); \\ Joerg Arndt, Nov 15 2014
    
  • PARI
    a19(lim,startAt=39)=startAt=ceil(startAt); my(v=vectorsmall(38),i=(startAt-1)%38); forfactored(n=startAt,lim\1+38, my(t=sigma(n)); if(i++>38,i=1); if(t==v[i]+38, return(n[1]-38)); v[i]=if(vecsum(n[2][,2])>1,t,0)) \\ Charles R Greathouse IV, Oct 25 2022

Extensions

Description corrected by Jud McCranie, May 25 2000

A015916 Numbers k such that sigma(k) + 10 = sigma(k+10).

Original entry on oeis.org

3, 7, 13, 19, 31, 37, 43, 61, 73, 79, 97, 103, 127, 139, 157, 163, 181, 223, 229, 241, 271, 283, 307, 337, 349, 373, 379, 409, 421, 433, 439, 457, 499, 547, 577, 607, 631, 643, 673, 691, 709, 733, 751, 787, 811, 829, 853, 877, 919, 937, 967, 1009
Offset: 1

Views

Author

Keywords

Comments

Different from A023203. Below 1000000 the only composite number here is 195556: sigma(195556) + 10 = 342230 + 10 = sigma(195566). - Labos Elemer, May 23 2000

Crossrefs

Programs

  • Mathematica
    Select[Range[2000], DivisorSigma[1, #] + 10==DivisorSigma[1, # + 10] &] (* Vincenzo Librandi, Mar 10 2014 *)
    Select[Partition[DivisorSigma[1,Range[1100]],11,1],#[[1]]+10==#[[-1]]&][[All,1]]-1 (* Harvey P. Dale, May 20 2021 *)

A054987 Smallest composite x such that sigma(x+2^n) = sigma(x) + 2^n.

Original entry on oeis.org

434, 305635357, 27, 39, 106645, 69, 2275, 63, 6475, 249, 7735, 3703, 10803, 16383, 58869, 51181, 87951, 1695, 9579, 105237, 98829, 1143369, 789609, 11625, 14038691, 178975, 48627929, 1881333, 402373721, 2667945, 82915599, 353195221, 70106601
Offset: 1

Views

Author

Labos Elemer, May 29 2000

Keywords

Comments

The sequence is initiated by smallest of A015915. Special primes of A023202, A049488-A049491 also satisfy the Sigma[p+2^w]=Sigma[p]+2^w relation

Examples

			For the term 69: Sigma[69+2^6] = Sigma[133] = 1+7+19+133 = Sigma[69]+64 = (1+3+23+69)+64 = 160.
		

Crossrefs

Programs

  • Mathematica
    Table[ Select[ Range[ 1, 110000 ], Equal[ EulerPhi[ #+2^k ]-EulerPhi[ # ]-2^k, 0 ] &&!PrimeQ[ # ]& ], {k, 1, 22} ]
  • PARI
    a(n)=my(N=2^n,x=3); while(isprime(x++) || sigma(x+N) != sigma(x)+N,); x \\ Charles R Greathouse IV, Mar 11 2014

Extensions

More terms from Labos Elemer, Aug 14 2003
a(21) corrected and a(27)-a(33) from Donovan Johnson, Nov 30 2008

A059118 Composite solutions to sigma(x)+8 = sigma(x+8).

Original entry on oeis.org

27, 1615, 1885, 218984, 4218475, 312016315, 746314601, 1125845307, 1132343549, 1296114929, 9016730984, 303419868239, 1197056419121, 2065971192041, 2948269852109, 4562970154601
Offset: 1

Views

Author

Jud McCranie, Jan 06 2001

Keywords

Comments

a(17) > 10^13. - Giovanni Resta, Jul 11 2013

Examples

			sigma(27)+8 = 48 = sigma(27+8), so 27 is in the sequence.
		

References

Crossrefs

Cf. A015915.

Programs

  • Mathematica
    ta={{0}};Do[If[Equal[DivisorSigma[1, n+8] -DivisorSigma[1, n]-8, 0]&&!PrimeQ[n], Print[n]; ta=Append[ta, n]], {n, 1000000000, 1300000000}]; ta=Delete[ta, 1] (* Labos Elemer, Jan 10 2005 *)

Extensions

a(8)-a(10) terms from Labos Elemer, Jan 10 2005
Offset corrected and a(11) added by Donovan Johnson, Dec 07 2008
a(12)-a(16) from Giovanni Resta, Jul 11 2013

A054984 Composite numbers k such that sigma(k + 6!) = sigma(k + 720) = sigma(k) + 720.

Original entry on oeis.org

427, 553, 595, 623, 737, 871, 913, 923, 1199, 1207, 1241, 1507, 1582, 1817, 1848, 2193, 2226, 2337, 2398, 2407, 2553, 2561, 2728, 2758, 2929, 3016, 3115, 3248, 3346, 3502, 3503, 3598, 3705, 3762, 4171, 4293, 4343, 4462, 4587, 4633, 4841, 4867, 4984
Offset: 1

Views

Author

Labos Elemer, May 29 2000

Keywords

Examples

			553 is a term because sigma(553) + 720 = 640 + 720 = 1360 = sigma(553 + 720) = sigma(1273) = 1 + 19 + 67 + 1273.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], CompositeQ[#] && Differences@ DivisorSigma[1, {#, # + 720}] == {720} &] (* Amiram Eldar, Mar 09 2025 *)
  • PARI
    isok(k) = !isprime(k) && sigma(k + 720) == sigma(k) + 720; \\ Amiram Eldar, Mar 09 2025

A063680 Solutions to sigma(k) + 7 = sigma(k+7).

Original entry on oeis.org

74, 531434, 387420482, 2541865828322
Offset: 1

Views

Author

Jud McCranie, Jul 28 2001

Keywords

Comments

No other solutions < 4290000000. Sequence A063679 shows how to generate more solutions, but there may be solutions other than those produced by A063679.
No others < 10^17. - Seth A. Troisi, Oct 25 2022
k or k+7 must be a square or twice a square (A028982). See comment in A015886. - Seth A. Troisi, Oct 26 2022
From Jon E. Schoenfield, Oct 26 2022: (Start)
Each of the first 4 terms of the sequence is of the form k = 9^j - 7:
74 = 9^2 - 7,
531434 = 9^6 - 7,
387420482 = 9^9 - 7,
2541865828322 = 9^13 - 7.
The next terms of this form are 9^53 - 7 and 9^82 - 7.
Does the sequence contain any terms that are not of this form?
(End)
No other terms < 2.7*10^15. - Jud McCranie, Jul 27 2025

Examples

			sigma(74) + 7 = 121 = sigma(74+7), so 74 is in the sequence.
		

Crossrefs

Programs

  • PARI
    isok(k) = sigma(k) + 7 == sigma(k+7); \\ Michel Marcus, Oct 25 2022

Extensions

a(4) from Seth A. Troisi, Oct 24 2022
Showing 1-7 of 7 results.