cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A023203 Primes p such that p + 10 is also prime.

Original entry on oeis.org

3, 7, 13, 19, 31, 37, 43, 61, 73, 79, 97, 103, 127, 139, 157, 163, 181, 223, 229, 241, 271, 283, 307, 337, 349, 373, 379, 409, 421, 433, 439, 457, 499, 547, 577, 607, 631, 643, 673, 691, 709, 733, 751, 787, 811, 829, 853, 877, 919, 937, 967, 1009, 1021, 1039, 1051
Offset: 1

Views

Author

Keywords

Comments

A subset of A002476. It appears that this is also a subset of A007645. The first few terms of A007645 that are not in this sequence are {67, 109, 151, 193, 199, 211, 277, 313, 331, 367, 397, 463, 487, 523, 541, 571, 601, 613, ...}. - Alexander Adamchuk, Aug 15 2006
The entries are all in A007645, because they cannot be of the form p = 3*j + 2. If they were, p + 10 = 3*j + 12 would be divisible by 3 and not prime. - R. J. Mathar, Oct 30 2009

Crossrefs

Different from A015916. Cf. A031928, A079033.

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(n) and IsPrime(n+10)]; // Vincenzo Librandi, Nov 20 2010
    
  • Maple
    for p from 1 to 10000 do if isprime(p) and isprime(p+10) then print(p) end if end do # Matt C. Anderson, Aug 26 2022
  • Mathematica
    Select[Prime[Range[200]], PrimeQ[# + 10] &] (* Harvey P. Dale, Dec 14 2011 *)
  • PARI
    is(n)=isprime(n)&&isprime(n+10) \\ Charles R Greathouse IV, Jul 01 2013

Extensions

Revised by N. J. A. Sloane, Jan 29 2013
New name from Michel Marcus, Mar 04 2020

A054905 Smallest composite x such that sigma(x) + 2n = sigma(x + 2n).

Original entry on oeis.org

434, 305635357, 104, 27, 195556, 65, 12, 39, 20, 56, 916, 80, 212282, 57, 44, 106645, 52, 125
Offset: 1

Views

Author

Labos Elemer May 23 2000

Keywords

Comments

a(19) > 4293000000, if it exists. - Jud McCranie, May 25 2000
a(19) > 10^11, if it exists. - Charles R Greathouse IV, Oct 26 2022

Examples

			a(5) corresponds to n=3+2=5, d=2n=10 and the smallest composite integer is 195556. The next solution is 1152136225.
		

Crossrefs

Programs

  • PARI
    a(n)=forcomposite(x=3,10^66,if(sigma(x)+2*n==sigma(x+2*n),return(x)));
    for(n=1,66,print1(a(n),", ")); \\ Joerg Arndt, Nov 15 2014
    
  • PARI
    a19(lim,startAt=39)=startAt=ceil(startAt); my(v=vectorsmall(38),i=(startAt-1)%38); forfactored(n=startAt,lim\1+38, my(t=sigma(n)); if(i++>38,i=1); if(t==v[i]+38, return(n[1]-38)); v[i]=if(vecsum(n[2][,2])>1,t,0)) \\ Charles R Greathouse IV, Oct 25 2022

Extensions

Description corrected by Jud McCranie, May 25 2000

A054984 Composite numbers k such that sigma(k + 6!) = sigma(k + 720) = sigma(k) + 720.

Original entry on oeis.org

427, 553, 595, 623, 737, 871, 913, 923, 1199, 1207, 1241, 1507, 1582, 1817, 1848, 2193, 2226, 2337, 2398, 2407, 2553, 2561, 2728, 2758, 2929, 3016, 3115, 3248, 3346, 3502, 3503, 3598, 3705, 3762, 4171, 4293, 4343, 4462, 4587, 4633, 4841, 4867, 4984
Offset: 1

Views

Author

Labos Elemer, May 29 2000

Keywords

Examples

			553 is a term because sigma(553) + 720 = 640 + 720 = 1360 = sigma(553 + 720) = sigma(1273) = 1 + 19 + 67 + 1273.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], CompositeQ[#] && Differences@ DivisorSigma[1, {#, # + 720}] == {720} &] (* Amiram Eldar, Mar 09 2025 *)
  • PARI
    isok(k) = !isprime(k) && sigma(k + 720) == sigma(k) + 720; \\ Amiram Eldar, Mar 09 2025

A063680 Solutions to sigma(k) + 7 = sigma(k+7).

Original entry on oeis.org

74, 531434, 387420482, 2541865828322
Offset: 1

Views

Author

Jud McCranie, Jul 28 2001

Keywords

Comments

No other solutions < 4290000000. Sequence A063679 shows how to generate more solutions, but there may be solutions other than those produced by A063679.
No others < 10^17. - Seth A. Troisi, Oct 25 2022
k or k+7 must be a square or twice a square (A028982). See comment in A015886. - Seth A. Troisi, Oct 26 2022
From Jon E. Schoenfield, Oct 26 2022: (Start)
Each of the first 4 terms of the sequence is of the form k = 9^j - 7:
74 = 9^2 - 7,
531434 = 9^6 - 7,
387420482 = 9^9 - 7,
2541865828322 = 9^13 - 7.
The next terms of this form are 9^53 - 7 and 9^82 - 7.
Does the sequence contain any terms that are not of this form?
(End)
No other terms < 2.7*10^15. - Jud McCranie, Jul 27 2025

Examples

			sigma(74) + 7 = 121 = sigma(74+7), so 74 is in the sequence.
		

Crossrefs

Programs

  • PARI
    isok(k) = sigma(k) + 7 == sigma(k+7); \\ Michel Marcus, Oct 25 2022

Extensions

a(4) from Seth A. Troisi, Oct 24 2022

A271575 Primes p such that p+10, p+100 and p+1000 are all prime.

Original entry on oeis.org

13, 31, 97, 163, 181, 283, 409, 499, 709, 787, 811, 877, 1087, 1399, 1423, 1609, 1777, 1801, 1879, 2347, 2677, 2719, 3457, 3517, 3919, 4273, 4483, 5701, 6043, 6121, 6211, 6481, 6691, 7573, 8941, 9733, 9739, 10069, 10093, 10159, 10243, 10789, 11161, 11251, 11689, 12799, 12907
Offset: 1

Views

Author

Emre APARI, Apr 10 2016

Keywords

Comments

Number of terms < 10^k: 0, 3, 12, 37, 159, 789, 3960, 21708, 129910, ..., . - Robert G. Wilson v, Jun 20 2018

Examples

			p=13; p+10=23 (is prime), p+100=113 (is prime), p+1000=1013 (is prime).
		

Crossrefs

Programs

  • Maple
    select(t -> isprime(t+1000) and isprime(t+100) and isprime(t+10) and isprime(t), [seq(i,i=7..20000, 6)]); # Robert Israel, Jun 20 2018
  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[# + 10] && PrimeQ[# + 100] && PrimeQ[# + 1000] &] (* Robert Price, Apr 10 2016 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if (isprime(p+10) && isprime(p+100) && isprime(p+1000), print1(p, ", "))); \\ Michel Marcus, Apr 10 2016

A271549 Primes p such that p+10^2, p+10^3, p+10^5, p+10^7, p+10^11, p+10^13 and p+10^17 are all prime.

Original entry on oeis.org

1399, 2157763, 13034041, 38208649, 38502313, 41518651, 42745111, 48154147, 49435063, 53872447, 58981513, 75194563, 83037247, 86139409, 101533963, 106287019, 140778403, 144593431, 155554237, 166083133, 166650193, 189371671, 199865893, 201738379, 224472877, 240133753, 271331773
Offset: 1

Views

Author

Emre APARI, Apr 10 2016

Keywords

Comments

The exponents of 10 are all prime (2,3,5,7,11,13,17).

Examples

			p = 1399:
p+10^2  = 1499 (is prime).
p+10^3  = 2399 (is prime).
p+10^5  = 101399 (is prime).
p+10^7  = 10001399 (is prime).
p+10^11 = 100000001399 (is prime).
p+10^13 = 10000000001399 (is prime).
p+10^17 = 100000000000001399 (is prime).
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10^9]], PrimeQ[# + 10^2] && PrimeQ[# + 10^3] && PrimeQ[# + 10^5] &&  PrimeQ[# + 10^7] && PrimeQ[# + 10^11] &&  PrimeQ[# + 10^13] && PrimeQ[# + 10^17] &] (* Robert Price, Apr 10 2016 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if (isprime(p+10^2) && isprime(p+10^3) && isprime(p+10^5) && isprime(p+10^7) && isprime(p+10^11) && isprime(p+10^13) && isprime(p+10^17), print1(p, ", "))); \\ Altug Alkan, Apr 10 2016

Extensions

More terms from Altug Alkan, Apr 10 2016
Showing 1-6 of 6 results.