cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A079033 First differences of A023203.

Original entry on oeis.org

4, 6, 6, 12, 6, 6, 18, 12, 6, 18, 6, 24, 12, 18, 6, 18, 42, 6, 12, 30, 12, 24, 30, 12, 24, 6, 30, 12, 12, 6, 18, 42, 48, 30, 30, 24, 12, 30, 18, 18, 24, 18, 36, 24, 18, 24, 24, 42, 18, 30, 42, 12, 18, 12, 36, 6, 60, 18, 42, 36, 30, 12, 6, 102, 24, 6, 42, 12, 6, 54, 6, 48, 12, 18, 30, 42
Offset: 1

Views

Author

N. J. A. Sloane, Jul 31 2003

Keywords

Crossrefs

Cf. A053323.

Programs

  • Maple
    N:= 10^4: # to use primes <= N
    Primes:= select(isprime, {2,seq(i,i=3..N,2)}):
    A023203:= sort(convert(Primes intersect map(`+`,Primes,10),list)):
    A023203[2..-1] - A023203[1..-2]; # Robert Israel, Jun 02 2016
  • Mathematica
    Differences[Select[Prime[Range[500]],PrimeQ[#+10]&]] (* Harvey P. Dale, May 02 2011 *)

Extensions

More terms from Labos Elemer, Aug 04 2003

A086138 Number of primes between p and p+10 if both p and (p+10) are prime, i.e., number of primes somewhere between 10+A023203(n) and A023203(n).

Original entry on oeis.org

3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 0, 1, 1, 0, 2, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 0, 1, 1, 2, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 1, 1, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 1, 1, 2, 0, 2, 1, 0, 2, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 2, 0, 1, 2, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 2
Offset: 1

Views

Author

Labos Elemer, Jul 29 2003

Keywords

Examples

			a(n)=0,1,2,3 correspond to {p,p+10} prime-pairs either consecutive ones or those with various d-patterns like as follows: a(n)=0 to cases like 139[10]149; a(n)=2 to 7[4,2,4]17 etc.; a(n)=3 to one case 3[2,2,4,2]13 and a(n)=2 to cases like 31[6,4]37 or 43[4,6]53.
		

Crossrefs

Programs

Extensions

Definition clarified by Harvey P. Dale, Jan 17 2025

A031928 Lower prime of a difference of 10 between consecutive primes.

Original entry on oeis.org

139, 181, 241, 283, 337, 409, 421, 547, 577, 631, 691, 709, 787, 811, 829, 919, 1021, 1039, 1051, 1153, 1171, 1249, 1399, 1471, 1627, 1699, 1723, 1801, 1879, 2017, 2029, 2053, 2089, 2143, 2521, 2647, 2719, 2731, 2767, 2887, 2917, 3001, 3109, 3361, 3517, 3547, 3571, 3583, 3709, 3769, 3823, 3853, 4201, 4219, 4231, 4243, 4261, 4273, 4327, 4339, 4363, 4483, 4663, 4861, 4909, 4957, 5011, 5179, 5323, 5581, 5659, 5701, 5791, 5869, 6079, 6091
Offset: 1

Views

Author

Lekraj Beedassy, Jul 23 2003

Keywords

Comments

Conjecture: The sequence is infinite and for every n, a(n+1) < a(n)^(1+1/n). Namely, a(n)^(1/n) is a strictly decreasing function of n (see comments at A248855). - Jahangeer Kholdi and Farideh Firoozbakht, Nov 29 2014

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(7000) | NextPrime(p)-p eq 10]; // Bruno Berselli, Apr 09 2013
    
  • Mathematica
    Transpose[Select[Partition[Prime[Range[800]], 2, 1], #[[2]] - #[[1]] == 10&]] [[1]] (* Harvey P. Dale, Oct 02 2014 *)
    p = Prime@Range@800; p[[Flatten@Position[Differences@p, 10]]] (* Hans Rudolf Widmer, Aug 28 2022 *)
  • PARI
    forprime(p=o=1,1e4,10+o==(o=p)&&print1(p-10",")) \\ M. F. Hasler, Mar 10 2017

Formula

a(n) = prime(A320703(n)). - R. J. Mathar, Apr 30 2024

Extensions

Edited by Labos Elemer, Jul 25 2003

A046136 Primes p such that p, p+4 and p+10 are primes.

Original entry on oeis.org

3, 7, 13, 19, 37, 43, 79, 97, 103, 127, 163, 223, 229, 307, 349, 379, 439, 457, 499, 643, 673, 853, 877, 937, 967, 1009, 1087, 1093, 1213, 1279, 1297, 1423, 1429, 1483, 1489, 1549, 1597, 1609, 1867, 1993, 2203, 2347, 2389, 2437, 2539, 2683, 2689, 2833, 2953
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    q:= p-> andmap(isprime, [p, p+4, p+10]):
    select(q, [$2..3000])[];  # Alois P. Heinz, Feb 23 2020
  • Mathematica
    Select[Range@ 2820, AllTrue[{#, # + 4, # + 10}, PrimeQ] &] (* Michael De Vlieger, Jul 24 2015, Version 10 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if (isprime(p+4) && isprime(p+10), print1(p, ", "))); \\ Michel Marcus, Jul 24 2015

Formula

A023200 INTERSECT A023203. - R. J. Mathar, Jan 23 2009

A054905 Smallest composite x such that sigma(x) + 2n = sigma(x + 2n).

Original entry on oeis.org

434, 305635357, 104, 27, 195556, 65, 12, 39, 20, 56, 916, 80, 212282, 57, 44, 106645, 52, 125
Offset: 1

Views

Author

Labos Elemer May 23 2000

Keywords

Comments

a(19) > 4293000000, if it exists. - Jud McCranie, May 25 2000
a(19) > 10^11, if it exists. - Charles R Greathouse IV, Oct 26 2022

Examples

			a(5) corresponds to n=3+2=5, d=2n=10 and the smallest composite integer is 195556. The next solution is 1152136225.
		

Crossrefs

Programs

  • PARI
    a(n)=forcomposite(x=3,10^66,if(sigma(x)+2*n==sigma(x+2*n),return(x)));
    for(n=1,66,print1(a(n),", ")); \\ Joerg Arndt, Nov 15 2014
    
  • PARI
    a19(lim,startAt=39)=startAt=ceil(startAt); my(v=vectorsmall(38),i=(startAt-1)%38); forfactored(n=startAt,lim\1+38, my(t=sigma(n)); if(i++>38,i=1); if(t==v[i]+38, return(n[1]-38)); v[i]=if(vecsum(n[2][,2])>1,t,0)) \\ Charles R Greathouse IV, Oct 25 2022

Extensions

Description corrected by Jud McCranie, May 25 2000

A156104 Primes p such that p+36 is also prime.

Original entry on oeis.org

5, 7, 11, 17, 23, 31, 37, 43, 47, 53, 61, 67, 71, 73, 101, 103, 113, 127, 131, 137, 157, 163, 191, 193, 197, 227, 233, 241, 257, 271, 277, 281, 311, 313, 317, 331, 337, 347, 353, 373, 383, 397, 421, 431, 443, 463, 467, 487, 521, 541, 557, 563, 571, 577, 607
Offset: 1

Views

Author

Vincenzo Librandi, Feb 08 2009

Keywords

Crossrefs

Cf. A156112.
Cf. sequences of the type p+n are primes: A001359 (n=2), A023200 (n=4), A023201 (n=6), A023202 (n=8), A023203 (n=10), A046133 (n=12), A153417 (n=14), A049488 (n=16), A153418 (n=18), A153419 (n=20), A242476 (n=22), A033560 (n=24), A252089 (n=26), A252090 (n=28), A049481 (n=30), A049489 (n=32), A252091 (n=34), this sequence (n=36); A062284 (n=50), A049490 (n=64), A156105 (n=72), A156107 (n=144).

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | IsPrime(p + 36)]; // Vincenzo Librandi, Oct 31 2012
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[(#+ 36)]&] (* Vincenzo Librandi, Oct 31 2012 *)

A015915 Numbers k such that sigma(k) + 8 = sigma(k+8).

Original entry on oeis.org

3, 5, 11, 23, 27, 29, 53, 59, 71, 89, 101, 131, 149, 173, 191, 233, 263, 269, 359, 389, 401, 431, 449, 479, 491, 563, 569, 593, 599, 653, 683, 701, 719, 743, 761, 821, 911, 929, 983, 1013, 1031, 1061, 1109, 1163, 1193, 1223, 1229, 1283, 1289
Offset: 1

Views

Author

Keywords

Comments

Different from A023202. Below 1000000 four composites were found [27, 1615, 1885, 218984] satisfying the "sigma(k) + 8 = sigma(k+8)" relation, together with more than 8000 primes. - Labos Elemer, May 23 2000

Examples

			sigma(27) + 8 = 48 = sigma(27+8), so 27 is in the sequence.
		

Crossrefs

Composite solutions are in A059118.

Programs

A015916 Numbers k such that sigma(k) + 10 = sigma(k+10).

Original entry on oeis.org

3, 7, 13, 19, 31, 37, 43, 61, 73, 79, 97, 103, 127, 139, 157, 163, 181, 223, 229, 241, 271, 283, 307, 337, 349, 373, 379, 409, 421, 433, 439, 457, 499, 547, 577, 607, 631, 643, 673, 691, 709, 733, 751, 787, 811, 829, 853, 877, 919, 937, 967, 1009
Offset: 1

Views

Author

Keywords

Comments

Different from A023203. Below 1000000 the only composite number here is 195556: sigma(195556) + 10 = 342230 + 10 = sigma(195566). - Labos Elemer, May 23 2000

Crossrefs

Programs

  • Mathematica
    Select[Range[2000], DivisorSigma[1, #] + 10==DivisorSigma[1, # + 10] &] (* Vincenzo Librandi, Mar 10 2014 *)
    Select[Partition[DivisorSigma[1,Range[1100]],11,1],#[[1]]+10==#[[-1]]&][[All,1]]-1 (* Harvey P. Dale, May 20 2021 *)

A054906 Smallest number x such that sigma(x+2n) = sigma(x)+2n (first definition).

Original entry on oeis.org

3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 7, 5, 3, 3, 7, 5, 3, 5, 3, 3, 5, 3, 7, 5, 3, 7, 5, 3, 3, 7, 5, 3, 5, 3, 3, 7, 5, 3, 5, 3, 7, 5, 3, 13, 7, 5, 3, 5, 3, 3, 5, 3, 3, 5, 3, 19, 13, 11, 13, 7, 5, 3, 5, 3, 7, 5, 3, 3, 11, 11, 7, 5, 3, 3, 7, 5, 3, 7, 5, 3, 5, 3, 7, 5, 3, 7, 5, 3, 3, 11, 11, 7, 5, 3, 3, 5, 3, 3, 13
Offset: 1

Views

Author

Labos Elemer, May 23 2000

Keywords

Comments

Least (prime) solutions for phi(x+2n)=phi(x)+2n seems to be identical to this sequence, while prime solutions are indeed identical to this sequence.
2nd definition = smallest number x such that phi(x+2n)=phi(x)+2n.
3rd definition = smallest primes p such that p+2n=q prime (A020483).
The 3 definitions are identical or conjectured to be identical.
The definitions are not identical if we do not take the smallest numbers. These smallest solutions are believed to be always prime numbers.
Duplicate of A020483, assuming that the 3rd definition is also correct. - R. J. Mathar, Apr 26 2015
If it can be proved that all these definitions are identical, then this entry should be merged with A020483. - N. J. A. Sloane, Feb 06 2017

Examples

			n-th primes 2,3,5,7,11,13, are solutions to sigma(x+2n)=2n+sigma(x) at 2n=2,6,22,116,88.
		

References

  • Sivaramakrishnan,R.(1989):Classical Theory of Arithmetical Functions. Marcel Dekker,Inc., New York.

Crossrefs

Programs

  • Maple
    A054906 := proc(n)
        local x;
        for x from 0 do
            if numtheory[sigma](x+2*n) = numtheory[sigma](x)+2*n then
                return x;
            end if;
        end do:
    end proc:
    seq(A054906(n),n=1..40); # R. J. Mathar, Sep 23 2016
  • Mathematica
    Table[x = 1; While[DivisorSigma[1, x + 2 n] != DivisorSigma[1, x] + 2 n, x++]; x, {n, 100}] (* Michael De Vlieger, Feb 05 2017 *)
  • PARI
    a(n) = my(x = 1); while(sigma(x+2*n) != sigma(x)+2*n, x++); x; \\ Michel Marcus, Dec 17 2013

Formula

Minimal solutions to A000203(x+2n)=A000203(x)+2n or to A000010(x+2n)=A000010(x)+2n or to p+2n=q; p, q primes, a(n)=p.
a(n) <= A054905(n). - R. J. Mathar, Apr 28 2015

A092146 Primes of the form p + 10 where p is a prime.

Original entry on oeis.org

13, 17, 23, 29, 41, 47, 53, 71, 83, 89, 107, 113, 137, 149, 167, 173, 191, 233, 239, 251, 281, 293, 317, 347, 359, 383, 389, 419, 431, 443, 449, 467, 509, 557, 587, 617, 641, 653, 683, 701, 719, 743, 761, 797, 821, 839, 863, 887, 929, 947, 977, 1019, 1031
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Mar 31 2004

Keywords

Crossrefs

Programs

Formula

a(n) = 10 + A023203(n). - Alois P. Heinz, Feb 27 2020
Showing 1-10 of 33 results. Next