cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A252089 Primes p such that p + 26 is prime.

Original entry on oeis.org

3, 5, 11, 17, 41, 47, 53, 71, 83, 101, 113, 131, 137, 167, 173, 197, 251, 257, 281, 311, 347, 353, 383, 431, 461, 521, 587, 593, 617, 647, 683, 701, 743, 761, 797, 827, 857, 881, 911, 941, 971, 983, 1013, 1061, 1091, 1097, 1103, 1187, 1223, 1277, 1301, 1373
Offset: 1

Views

Author

Vincenzo Librandi, Dec 14 2014

Keywords

Examples

			17 is in this sequence because 17+26 = 43 is prime.
431 is in this sequence because 431+26 = 457 is prime.
		

Crossrefs

Cf. sequences of the type p+n are primes: A001359 (n=2), A023200 (n=4), A023201 (n=6), A023202 (n=8), A023203 (n=10), A046133 (n=12), A153417 (n=14), A049488 (n=16), A153418 (n=18), A153419 (n=20), A242476 (n=22), A033560 (n=24), this sequence (n=26), A252090 (n=28), A049481 (n=30), A049489 (n=32), A252091 (n=34), A156104 (n=36); A062284 (n=50), A049490 (n=64), A156105 (n=72), A156107 (n=144).

Programs

  • Magma
    [NthPrime(n): n in [1..250] | IsPrime(NthPrime(n)+26)];
  • Mathematica
    Select[Prime[Range[200]], PrimeQ[# + 26] &]

A156112 Primes p such that p+36 and p+72 are both prime.

Original entry on oeis.org

7, 11, 17, 31, 37, 67, 101, 127, 157, 191, 197, 241, 277, 281, 311, 317, 337, 347, 431, 521, 541, 571, 647, 751, 787, 911, 941, 947, 977, 997, 1051, 1151, 1187, 1451, 1487, 1621, 1627, 1877, 2017, 2027, 2237, 2311, 2467, 2521, 2621, 2647, 2657, 2677, 2731
Offset: 1

Views

Author

Vincenzo Librandi, Feb 08 2009

Keywords

Comments

A156105 INTERSECT A156104. [R. J. Mathar, Feb 09 2009]

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(3000)|IsPrime(p + 36) and IsPrime (p + 72)]; // Vincenzo Librandi, Oct 31 2012
  • Mathematica
    Select[Prime[Range[3000]], And @@ PrimeQ[{# + 36,# + 72}]&] (* Vincenzo Librandi, Oct 31 2012 *)
    Select[Prime[Range[3000]],AllTrue[#+{36,72},PrimeQ]&] (* Harvey P. Dale, Jul 12 2023 *)

Extensions

More terms from R. J. Mathar, Feb 09 2009

A092475 Primes p such that p + 2^2, p + 4^2 and p + 6^2 are also primes.

Original entry on oeis.org

7, 37, 43, 67, 163, 277, 463, 487, 823, 1087, 1093, 1213, 1423, 2683, 3907, 4447, 5653, 7687, 8677, 8803, 11467, 11923, 13147, 13693, 15787, 16417, 16657, 16927, 18253, 18397, 19387, 20113, 20353, 21487, 27763, 28627, 30493, 34483, 38917, 39103, 40483, 41227
Offset: 1

Views

Author

Ray G. Opao, Mar 25 2004

Keywords

Examples

			a(3) = 43.
43 + 2^2 = 43 +  4 = 47, which is prime.
43 + 4^2 = 43 + 16 = 59, which is prime.
43 + 6^2 = 43 + 36 = 79, which is prime.
		

Crossrefs

Subsequence of A049492.

Programs

  • Mathematica
    Select[Prime[Range[5000]],And@@PrimeQ[{#+4,#+16,#+36}]&] (* Harvey P. Dale, Jun 09 2011 *)

Formula

A049492 INTERSECT A156104. - R. J. Mathar, Mar 26 2024

Extensions

More terms from Harvey P. Dale, Jun 09 2011

A156109 Primes p such that p+18 and p+36 are both prime.

Original entry on oeis.org

5, 11, 23, 43, 53, 61, 71, 113, 131, 163, 193, 233, 313, 331, 383, 421, 431, 443, 641, 673, 683, 691, 733, 751, 821, 911, 1013, 1033, 1051, 1213, 1283, 1453, 1531, 1583, 1601, 1723, 1741, 1871, 1913, 1993, 2063, 2143, 2203, 2251, 2381, 2423, 2441, 2503
Offset: 1

Views

Author

Vincenzo Librandi, Feb 08 2009

Keywords

Comments

A153418 INTERSECT A156104. [Bruno Berselli, Nov 01 2012]

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(3000)|IsPrime(p + 18) and IsPrime (p + 36)]; // Vincenzo Librandi, Oct 31 2012
  • Maple
    a := proc (n) if isprime(ithprime(n)+18) = true and isprime(ithprime(n)+36) = true then ithprime(n) else end if end proc: seq(a(n), n = 1 .. 400); # Emeric Deutsch, Mar 02 2009
  • Mathematica
    Select[Prime[Range[3000]], And @@ PrimeQ[{# + 18, # + 36}]&] (* Vincenzo Librandi, Oct 31 2012 *)

Extensions

More terms from Emeric Deutsch, Mar 02 2009

A156123 Primes p such that p+36 and p+144 are both prime.

Original entry on oeis.org

5, 7, 23, 37, 47, 53, 67, 113, 127, 137, 163, 193, 257, 277, 313, 317, 347, 397, 443, 463, 487, 557, 607, 617, 683, 733, 823, 827, 947, 1087, 1093, 1223, 1283, 1423, 1453, 1523, 1657, 1723, 1787, 1993, 2017, 2063, 2143, 2203, 2207, 2237, 2273, 2297, 2503, 2543
Offset: 1

Views

Author

Vincenzo Librandi, Feb 08 2009

Keywords

Comments

A156104 INTERSECT A156107. - Vincenzo Librandi, Nov 01 2012

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(3000)|IsPrime(p + 36) and IsPrime (p + 144)]; // Vincenzo Librandi, Oct 31 2012
  • Mathematica
    Select[Prime[Range[3000]], And @@ PrimeQ[{# + 36, # + 144}]&] (* Vincenzo Librandi, Oct 31 2012 *)

Extensions

137 inserted and sequence extended by R. J. Mathar, Feb 19 2009

A268305 Numbers k such that k - 37, k - 1, k + 1, k + 37 are consecutive primes.

Original entry on oeis.org

1524180, 3264930, 3970530, 5438310, 5642910, 6764940, 8176410, 10040880, 10413900, 10894320, 11639520, 12352980, 13556340, 15900720, 16897590, 17283360, 18168150, 18209100, 18686910, 19340220, 20099940, 20359020, 20483340, 21028290, 21846360
Offset: 1

Views

Author

Karl V. Keller, Jr., Apr 17 2016

Keywords

Comments

This sequence is a subsequence of A014574 (average of twin prime pairs), A249674 (divisible by 30) and A256753.
The numbers k - 37 and k + 1 belong to A156104 (p and p + 36 are primes) and A134117 (p where p + 36 is the next prime).
The numbers k - 37 and k - 1 belong to A271347 (p and p + 38 are primes).

Examples

			1524180 is the average of the four consecutive primes 1524143, 1524179, 1524181, 1524217.
3264930 is the average of the four consecutive primes 3264893, 3264929, 3264931, 3264967.
		

Crossrefs

Cf. A014574, A077800 (twin primes), A249674, A256753.

Programs

  • Mathematica
    Select[Partition[Prime[Range[14*10^5]],4,1],Differences[#]=={36,2,36}&][[All,2]]+1 (* Harvey P. Dale, Mar 12 2018 *)
  • Python
    from sympy import isprime,prevprime,nextprime
    for i in range(0,30000001,6):
      if isprime(i-1) and isprime(i+1) and prevprime(i-1) == i-37 and nextprime(i+1) == i+37 : print (i,end=', ')

A271349 Numbers n such that n - 35, n - 1, n + 1 and n + 35 are consecutive primes.

Original entry on oeis.org

276672, 558828, 1050852, 1278288, 1486908, 1625418, 2536308, 2538918, 2690958, 2731242, 3015162, 3252678, 3268338, 3508278, 3711612, 4233708, 4575912, 4717962, 5004402, 5108352, 5404032, 5482782, 5519082, 5525328, 5640918, 5654358, 5995818
Offset: 1

Views

Author

Karl V. Keller, Jr., Apr 04 2016

Keywords

Comments

This sequence is a subsequence of A014574 (average of twin prime pairs) and A256753.
The terms ending in 2 (resp. 8) are congruent to 12 (resp. 18) mod 30.
The numbers n - 35 and n + 1 belong to A252091 (p and p + 34 are primes) and A134116 (p such that p + 34 is the next prime).
The numbers n - 35 and n - 1 belong to A156104 (p and p + 36 are primes).

Examples

			276672 is the average of the four consecutive primes 276637, 276671, 276673, 276707.
558828 is the average of the four consecutive primes 558793, 558827, 558829, 558863.
		

Crossrefs

Cf. A014574, A077800 (twin primes), A256753.

Programs

  • Mathematica
    Select[Partition[Prime[Range[500000]],4,1],Differences[#]=={34,2,34}&] [[All, 2]]+1 (* Harvey P. Dale, Oct 11 2017 *)
  • Python
    from sympy import isprime,prevprime,nextprime
    for i in range(0,1000001,6):
      if isprime(i-1) and isprime(i+1) and prevprime(i-1) == i-35 and nextprime(i+1) == i+35 :  print (i,end=', ')

A309392 Square array read by downward antidiagonals: A(n, k) is the k-th prime p such that p + 2*n is also prime, or 0 if that prime does not exist.

Original entry on oeis.org

3, 5, 3, 11, 7, 5, 17, 13, 7, 3, 29, 19, 11, 5, 3, 41, 37, 13, 11, 7, 5, 59, 43, 17, 23, 13, 7, 3, 71, 67, 23, 29, 19, 11, 5, 3, 101, 79, 31, 53, 31, 17, 17, 7, 5, 107, 97, 37, 59, 37, 19, 23, 13, 11, 3, 137, 103, 41, 71, 43, 29, 29, 31, 13, 11, 7, 149, 109
Offset: 1

Views

Author

Felix Fröhlich, Jul 28 2019

Keywords

Comments

The same as A231608 except that A231608 gives the upward antidiagonals of the array, while this sequence gives the downward antidiagonals.
Conjecture: All values are nonzero, i.e., for any even integer e there are infinitely many primes p such that p + e is also prime.
The conjecture is true if Polignac's conjecture is true.

Examples

			The array starts as follows:
3,  5, 11, 17, 29, 41, 59,  71, 101, 107, 137, 149, 179, 191
3,  7, 13, 19, 37, 43, 67,  79,  97, 103, 109, 127, 163, 193
5,  7, 11, 13, 17, 23, 31,  37,  41,  47,  53,  61,  67,  73
3,  5, 11, 23, 29, 53, 59,  71,  89, 101, 131, 149, 173, 191
3,  7, 13, 19, 31, 37, 43,  61,  73,  79,  97, 103, 127, 139
5,  7, 11, 17, 19, 29, 31,  41,  47,  59,  61,  67,  71,  89
3,  5, 17, 23, 29, 47, 53,  59,  83,  89, 113, 137, 149, 167
3,  7, 13, 31, 37, 43, 67,  73,  97, 151, 157, 163, 181, 211
5, 11, 13, 19, 23, 29, 41,  43,  53,  61,  71,  79,  83,  89
3, 11, 17, 23, 41, 47, 53,  59,  83,  89, 107, 131, 137, 173
7, 19, 31, 37, 61, 67, 79, 109, 127, 151, 157, 211, 229, 241
5,  7, 13, 17, 19, 23, 29,  37,  43,  47,  59,  73,  79,  83
		

Crossrefs

Cf. A231608.
Cf. A001359 (row 1), A023200 (row 2), A023201 (row 3), A023202 (row 4), A023203 (row 5), A046133 (row 6), A153417 (row 7), A049488 (row 8), A153418 (row 9), A153419 (row 10), A242476 (row 11), A033560 (row 12), A252089 (row 13), A252090 (row 14), A049481 (row 15), A049489 (row 16), A252091 (row 17), A156104 (row 18), A271347 (row 19), A271981 (row 20), A271982 (row 21), A272176 (row 22), A062284 (row 25), A049490 (row 32), A020483 (column 1).

Programs

  • PARI
    row(n, terms) = my(i=0); forprime(p=1, , if(i>=terms, break); if(ispseudoprime(p+2*n), print1(p, ", "); i++))
    array(rows, cols) = for(x=1, rows, row(x, cols); print(""))
    array(12, 14) \\ Print initial 12 rows and 14 columns of the array

A365850 Numbers k for which k^2 + (k')^2 is a square, where k' is the arithmetic derivative of k (A003415).

Original entry on oeis.org

0, 1, 12, 15, 35, 81, 143, 323, 400, 441, 899, 1540, 1763, 2700, 3599, 4641, 5183, 5929, 9375, 10395, 10403, 11663, 13585, 18225, 19043, 21952, 22499, 30576, 32399, 35581, 36863, 39203, 48841, 51983, 57599, 72899, 79523, 97343, 121103, 148176, 166375, 175692, 176399
Offset: 1

Views

Author

Marius A. Burtea, Oct 09 2023

Keywords

Comments

If p and p + 2 are twin primes (A001359) then m = p*(p + 2) is a term. Indeed, m' = p + (p + 2) = 2*p + 2 and m^2 + (m')^2 = p^2*(p + 2)^2 + (2*p + 2)^2 = (p^2 + 2*p + 2)^2.
More generally, if p and p + 2*k, k >= 1, are prime numbers, then m = p^k*(p + 2*k)^k is a term. Indeed, m' = k*p^(k - 1)*(p + 2*k)^k+ k*p^k*(p + 2*k)^(k - 1) = k*p^(k - 1)*(p + 2*k)^(k-1)*(2*p + 2*k). Thus, m^2 + (m')^2 = p^(2*k)*(p + 2*k)^(2*k) + (k^2)*p^(2*k - 2)*(p + 2*k)^(2*k - 2)*(2*p + 2*k)^2 = p^(2*k - 2)*(p + 2*k)^(2*k - 2)*(p^2*(p + 2*k)^2 + k^2*(2*p + 2*k)^2) = p^(2*k - 2)*(p + 2*k)^(2*k - 2)*(2*k^2 + 2*k*p + p^2)^2.

Examples

			For k = 12, k' = 16 and 12^2 + 16^2 = 144 + 256 = 400 = 20^2, so 12 is a term.
For k = 15, k' = 8 and 15^2 + 8^2 = 225 + 64 = 289 = 17^2, so 15 is a term.
For k = 143, k' = 24 and 143^2 + 24^2 = 144 + 256 = 21025 = 145^2, so 143 is a term.
		

Crossrefs

Programs

  • Magma
    f:=func; [n:n in [0..200000] |IsSquare( n^2+( Floor(f(n))^2))];
  • Maple
    ader:= proc(n) local f;   n*add(f[2]/f[1], f=ifactors(n)[2]) end proc:
    select(t -> issqr(t^2 + ader(t)^2), [$0..10^6]; # Robert Israel, Oct 17 2023
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[0, 180000], IntegerQ[Sqrt[#^2 + d[#]^2]] &] (* Amiram Eldar, Oct 11 2023 *)
Showing 1-9 of 9 results.