cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A015915 Numbers k such that sigma(k) + 8 = sigma(k+8).

Original entry on oeis.org

3, 5, 11, 23, 27, 29, 53, 59, 71, 89, 101, 131, 149, 173, 191, 233, 263, 269, 359, 389, 401, 431, 449, 479, 491, 563, 569, 593, 599, 653, 683, 701, 719, 743, 761, 821, 911, 929, 983, 1013, 1031, 1061, 1109, 1163, 1193, 1223, 1229, 1283, 1289
Offset: 1

Views

Author

Keywords

Comments

Different from A023202. Below 1000000 four composites were found [27, 1615, 1885, 218984] satisfying the "sigma(k) + 8 = sigma(k+8)" relation, together with more than 8000 primes. - Labos Elemer, May 23 2000

Examples

			sigma(27) + 8 = 48 = sigma(27+8), so 27 is in the sequence.
		

Crossrefs

Composite solutions are in A059118.

Programs

A084293 a(n) = 2n + A054905(n).

Original entry on oeis.org

436, 305635361, 110, 35, 195566, 77, 26, 55, 38, 76, 938, 104, 212308, 85, 74, 106677, 86, 161
Offset: 1

Views

Author

Labos Elemer, May 26 2003

Keywords

Comments

The sequence begins 436, 305635361, 110, 35, 195566, 77, 26, 55, 38, 76, 938, 104, 212308, 85, 74, 106677, 86, 161, ?, 91, 87, 92, 122, 111, 1585396, 145, 94, 76627, 10283, 159, 772, 133, 122, 412, 194, 142, 964, 205, 374, 925, 6725, 209, ?, 1015, 178, ?, ?, 206, 146, ?, ..., where the other missing terms (designated by "?") are unknown, if they exist (see also A206768).

Examples

			To terms of A054905, where sigma(x+2n)=sigma(x)+2n replacing x+2n=y,x=y-2n, we get sigma(y)-2n=sigma(y-2n);
For several analogous sequences, the corresponding "mirror-solutions" can be easily constructed. See: e.g. A015913-A015918; A050507, A054799, A054903-A054906; A054982-A054987; A059118; A055009, A055458, A063500, etc.
		

Crossrefs

Cf. A054905.

Formula

Composite x satisfying sigma(x-2n) = sigma(x) - 2n.

A084292 a(n) = 6n + A054904(n).

Original entry on oeis.org

110, 77, 38, 104, 74, 161, 87, 111, 94, 159, 122, 142, 374, 209, 178, 206, 206, 253, 326, 302, 206, 302, 471, 249, 519, 341, 346, 303, 354, 481, 542, 377, 2057, 533, 386, 411, 5138, 662, 846, 527, 386, 437, 1034, 519, 794, 689, 626, 493, 566, 629, 873, 527, 638
Offset: 1

Views

Author

Labos Elemer, May 26 2003

Keywords

Comments

Composite solutions y to sigma(y-6n) = sigma(y) - 6n. For terms x of A054904, where sigma(x+6n) = sigma(x) + 6n, replacing x+6n = y, x = y-6n, we get sigma(y) - 6n = sigma(y-6n).

Crossrefs

Cf. A000203 (sigma), A054904, A084293.
For several analogous sequences such corresponding "mirror-solutions" can be easily constructed. See, e.g., A015913-A015918, A050507, A054799, A054903-A054906, A054982-A054987, A059118, A055009, A055458, A063500, etc.
Showing 1-3 of 3 results.