cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054882 Closed walks of length n along the edges of a dodecahedron based at a vertex.

Original entry on oeis.org

1, 0, 3, 0, 15, 6, 87, 84, 567, 882, 4095, 8448, 32079, 78078, 265863, 710892, 2282631, 6430794, 20009391, 58008216, 177478623, 522598230, 1584540279, 4705481220, 14198074455, 42357719586, 127472924127, 381253030704
Offset: 0

Views

Author

Paolo Dominici (pl.dm(AT)libero.it), May 23 2000

Keywords

Crossrefs

Programs

  • Magma
    [Ceiling((5+3^n+(-1)^n*2^(n+2)+3*(1+(-1)^n)*Sqrt(5)^n)/20): n in [0..30]]; // Vincenzo Librandi, Aug 24 2011
    
  • Mathematica
    LinearRecurrence[{2,10,-16,-25,30}, {1,0,3,0,15,6}, 41] (* G. C. Greubel, Feb 07 2023 *)
  • SageMath
    def A054882(n): return (5+3^n+4*(-2)^n+3*(1+(-1)^n)*5^(n/2)+4*0^n)/20
    [A054882(n) for n in range(41)] # G. C. Greubel, Feb 07 2023

Formula

G.f.: (1/20)*(4 + 5/(1-x) + 1/(1-3*x) + 4/(1+2*x) + 6/(1-5*x^2)).
G.f.: (1 - 2*x - 7*x^2 + 10*x^3 + 10*x^4 - 6*x^5)/((1-x)*(1+2*x)*(1-3*x)*(1-5*x^2)).
a(n) = (5 + 3^n + (-1)^n*2^(n+2) + 3*(1+(-1)^n)*sqrt(5)^n + 4*0^n)/20.
E.g.f.: (1/20)*(4 + 4*exp(-2*x) + 5*exp(x) + exp(3*x) + 6*cosh(sqrt(5)*x)). - G. C. Greubel, Feb 07 2023