cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054890 Layer counting sequence for hyperbolic tessellation by regular heptagons of angle Pi/3.

Original entry on oeis.org

1, 7, 42, 245, 1428, 8323, 48510, 282737, 1647912, 9604735, 55980498, 326278253, 1901689020, 11083855867, 64601446182, 376524821225, 2194547481168, 12790760065783, 74550012913530, 434509317415397
Offset: 1

Views

Author

Paolo Dominici (pl.dm(AT)libero.it), May 23 2000

Keywords

Comments

The layer sequence is the sequence of the cardinalities of the layers accumulating around a (finite-sided) polygon of the tessellation under successive side-reflections; see the illustration accompanying A054888.

Crossrefs

Programs

  • Magma
    [n eq 1 select 1 else 7*Evaluate(ChebyshevSecond(n-1), 3): n in [1..40]]; // G. C. Greubel, Feb 08 2023
    
  • Mathematica
    Rest@CoefficientList[Series[x*(1+x+x^2)/(1-6*x+x^2), {x,0,30}], x] (* Michael De Vlieger, Dec 29 2020 *)
    LinearRecurrence[{6,-1},{1,7,42},20] (* Harvey P. Dale, Jun 06 2021 *)
  • SageMath
    [7*chebyshev_U(n-2, 3) + int(n==1) for n in range(1,41)] # G. C. Greubel, Feb 08 2023

Formula

a(n) = 7*A001109(n-1) + [n=1].
G.f.: x*(1+x+x^2)/(1-6*x+x^2).
a(n) = A001109(n) + A001109(n-1) + A001109(n-2), n>1. - Ralf Stephan, Apr 26 2003