A054896 a(n) = Sum_{k>0} floor(n/7^k).
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13
Offset: 0
Keywords
Examples
a(10^0) = 0. a(10^1) = 1. a(10^3) = 16. a(10^3) = 164. a(10^4) = 1665. a(10^5) = 16662. a(10^6) = 166664. a(10^7) = 1666661. a(10^8) = 16666662. a(10^9) = 166666661
Links
- Hieronymus Fischer, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Magma
function A054896(n) if n eq 0 then return n; else return A054896(Floor(n/7)) + Floor(n/7); end if; return A054896; end function; [A054896(n): n in [0..100]]; // G. C. Greubel, Feb 09 2023
-
Mathematica
Table[t=0; p=7; While[s=Floor[n/p]; t=t+s; s>0, p *= 7]; t, {n,0,100}]
-
PARI
a(n)=(n-sumdigits(n, 7))\6 \\ Alan Michael Gómez Calderón, Oct 08 2024
-
SageMath
def A054896(n): if (n==0): return 0 else: return A054896(n//7) + (n//7) [A054896(n) for n in range(101)] # G. C. Greubel, Feb 09 2023
Formula
a(n) = floor(n/7) + floor(n/49) + floor(n/343) + floor(n/2401) + ...
a(n) = (n - A053828(n))/6.
From Hieronymus Fischer, Aug 14 2007: (Start)
a(n) = a(floor(n/7)) + floor(n/7).
a(7*n) = n + a(n).
a(n*7^m) = a(n) + n*(7^m-1)/6.
a(k*7^m) = k*(7^m-1)/6, for 0 <= k < 7, m >= 0.
Asymptotic behavior:
a(n) = n/6 + O(log(n)).
a(n+1) - a(n) = O(log(n)); this follows from the inequalities below.
a(n) <= (n-1)/6; equality holds for powers of 7.
a(n) >= (n-6)/6 - floor(log_7(n)); equality holds for n=7^m-1, m>0. -
lim inf (n/6 - a(n)) = 1/6, for n-->oo.
lim sup (n/6 - log_7(n) - a(n)) = 0, for n-->oo.
lim sup (a(n+1) - a(n) - log_7(n)) = 0, for n-->oo.
G.f.: (1/(1-x))*Sum_{k > 0} x^(7^k)/(1-x^(7^k)). (End)
Partial sums of A214411. - R. J. Mathar, Jul 08 2021
Extensions
Examples added by Hieronymus Fischer, Jun 06 2012
Comments