A054911 Number of n-dimensional odd unimodular lattices (or quadratic forms).
0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 6, 9, 13, 16, 28, 40, 68, 117, 273, 665, 2566, 17059, 374062
Offset: 0
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 49.
Links
- Bill Allombert and Gaëtan Chenevier, Unimodular Hunting II, arXiv:2410.19569 [math.NT], 2024.
- Gaëtan Chenevier, Unimodular hunting, Cogent Seminar, Jul 05 2021.
- Gaëtan Chenevier, Unimodular hunting, Modular Forms Workshop, Oberwolfach online, Feb 2021.
- Gaëtan Chenevier, Unimodular Hunting, arXiv:2410.18788 [math.NT], 2024.
- Steven R. Finch, Minkowski-Siegel mass constants [Broken link]
- Steven R. Finch, Minkowski-Siegel mass constants
- Oliver D. King, A mass formula for unimodular lattices with no roots, Math. Comp., 72 (2003), no. 242, 839-863. See Table 3 page 854.
Programs
-
Magma
function a(n) if n lt 3 then return Min(1,n); end if; L := NumberFieldLattice(QNF(), n); return #GenusRepresentatives(L); end function; // Robin Visser, Jan 24 2025
Formula
If 8 divides n, then a(n) = A005134(n) - A054909(n/8), otherwise a(n) = A005134(n). - Robin Visser, Jan 24 2025
Comments