A054974 Number of nonnegative integer 2 X 2 matrices with no zero rows or columns and with sum of elements equal to n, up to row and column permutation.
1, 2, 6, 9, 17, 23, 36, 46, 65, 80, 106, 127, 161, 189, 232, 268, 321, 366, 430, 485, 561, 627, 716, 794, 897, 988, 1106, 1211, 1345, 1465, 1616, 1752, 1921, 2074, 2262, 2433, 2641, 2831, 3060, 3270, 3521, 3752, 4026, 4279, 4577, 4853, 5176, 5476, 5825, 6150
Offset: 2
Examples
There are 9 nonnegative integer 2 X 2 matrices with no zero rows or columns and with sum of elements equal to 5, up to row and column permutation: [0 1] [0 1] [0 1] [0 1] [0 2] [0 2] [0 2] [0 3] [1 1] [1 3] [2 2] [3 1] [4 0] [1 2] [2 1] [3 0] [1 1] [1 2].
Links
- Colin Barker, Table of n, a(n) for n = 2..1000
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Programs
-
Maple
gf := -x^2*(x^3-x^2-1)/((x^2-1)^2*(x-1)^2): s := series(gf, x, 101): for i from 2 to 100 do printf(`%d,`,coeff(s,x,i)) od:
-
PARI
Vec(-x^2*(x^3-x^2-1) / ((x^2-1)^2*(x-1)^2) + O(x^60)) \\ Colin Barker, Jan 16 2017
Formula
G.f.: -x^2*(x^3-x^2-1) / ((x^2-1)^2*(x-1)^2).
From Colin Barker, Jan 16 2017: (Start)
a(n) = (6 - 6*(-1)^n + (9*(-1)^n-17)*n + 12*n^2 + 2*n^3) / 48.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>7.
(End)
Extensions
More terms from James Sellers, May 29 2000
Comments