cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054979 e-perfect numbers: numbers k such that the sum of the e-divisors (exponential divisors) of k equals 2*k.

Original entry on oeis.org

36, 180, 252, 396, 468, 612, 684, 828, 1044, 1116, 1260, 1332, 1476, 1548, 1692, 1800, 1908, 1980, 2124, 2196, 2340, 2412, 2556, 2628, 2700, 2772, 2844, 2988, 3060, 3204, 3276, 3420, 3492, 3636, 3708, 3852, 3924, 4068, 4140, 4284, 4572, 4716
Offset: 1

Views

Author

Jud McCranie, May 29 2000

Keywords

Comments

The e-divisors (or exponential divisors) of x=Product p(i)^r(i) are all numbers of the form Product p(i)^s(i) where s(i) divides r(i) for all i.
The number of e-divisors for n is A049419(n). - Jon Perry, Nov 13 2012
Conjecture: Every e-perfect number is divisible by 36, see A219016. - Jon Perry, Nov 13 2012

Examples

			The e-divisors of 36 are 2*3, 4*3, 2*9 and 4*9 and the sum of these = 2*36, so 36 is e-perfect.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B17, pp. 110-111.
  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter III, p. 116-117.

Crossrefs

Programs

  • Maple
    for n from 1 do
        if A051377(n) = 2*n then
            printf("%d,\n",n) ;
        end if;
    end do: # R. J. Mathar, Oct 05 2017
  • Mathematica
    ee[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; Select[Range[5000], ee[#] == 2 # &] (* T. D. Noe, Nov 14 2012 *)
  • PARI
    is(n)=my(f=factor(n));prod(i=1,#f[,1],sumdiv(f[i,2],d, f[i,1]^d))==2*n \\ Charles R Greathouse IV, Nov 22 2011

Formula

{n: A051377(n) = 2*n}. - R. J. Mathar, Oct 05 2017