cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055013 Sum of 4th powers of digits of n.

Original entry on oeis.org

0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 1, 2, 17, 82, 257, 626, 1297, 2402, 4097, 6562, 16, 17, 32, 97, 272, 641, 1312, 2417, 4112, 6577, 81, 82, 97, 162, 337, 706, 1377, 2482, 4177, 6642, 256, 257, 272, 337, 512, 881, 1552, 2657, 4352, 6817
Offset: 0

Views

Author

Henry Bottomley, May 31 2000

Keywords

Comments

Fixed points are listed in A052455, row 4 of A252648. See also A061210. - M. F. Hasler, Apr 12 2015

Crossrefs

Programs

  • Magma
    [0] cat [&+[d^4: d in Intseq(n)]: n in [1..50]]; // Bruno Berselli, Feb 01 2013
    
  • Maple
    A055013 := proc(n)
            add(d^4,d=convert(n,base,10)) ;
    end proc:
    seq(A055013(n),n=0..20) ; # R. J. Mathar, Nov 07 2011
  • Mathematica
    Table[Sum[DigitCount[n][[i]] i^4, {i, 9}], {n, 0, 50}] (* Bruno Berselli, Feb 01 2013 *)
    Table[Total[IntegerDigits[n]^4],{n,0,50}] (* Harvey P. Dale, Jul 28 2019 *)
  • PARI
    a(n)=round(normlp(n,4)^4) \\ Quite slow. - M. F. Hasler, Apr 12 2015
    
  • PARI
    A055013(n)=sum(i=1,#n=digits(n),n[i]^4) \\ M. F. Hasler, Apr 12 2015

Formula

a(n) = sum{k>0, (floor(n/10^k)-10*floor(n/10^(k+1)))^4}. - Hieronymus Fischer, Jun 25 2007
a(10n+k) = a(n)+k^4, 0<=k<10. - Hieronymus Fischer, Jun 25 2007