A055013 Sum of 4th powers of digits of n.
0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 1, 2, 17, 82, 257, 626, 1297, 2402, 4097, 6562, 16, 17, 32, 97, 272, 641, 1312, 2417, 4112, 6577, 81, 82, 97, 162, 337, 706, 1377, 2482, 4177, 6642, 256, 257, 272, 337, 512, 881, 1552, 2657, 4352, 6817
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- K. Chikawa, K. Iséki, and T. Kusakabe, On a problem by H. Steinhaus, Acta Arithmetica 7 (1962), 251-252. - _Don Knuth_, Sep 07 2015
- Index entries for Colombian or self numbers and related sequences
Crossrefs
Programs
-
Magma
[0] cat [&+[d^4: d in Intseq(n)]: n in [1..50]]; // Bruno Berselli, Feb 01 2013
-
Maple
A055013 := proc(n) add(d^4,d=convert(n,base,10)) ; end proc: seq(A055013(n),n=0..20) ; # R. J. Mathar, Nov 07 2011
-
Mathematica
Table[Sum[DigitCount[n][[i]] i^4, {i, 9}], {n, 0, 50}] (* Bruno Berselli, Feb 01 2013 *) Table[Total[IntegerDigits[n]^4],{n,0,50}] (* Harvey P. Dale, Jul 28 2019 *)
-
PARI
a(n)=round(normlp(n,4)^4) \\ Quite slow. - M. F. Hasler, Apr 12 2015
-
PARI
A055013(n)=sum(i=1,#n=digits(n),n[i]^4) \\ M. F. Hasler, Apr 12 2015
Formula
a(n) = sum{k>0, (floor(n/10^k)-10*floor(n/10^(k+1)))^4}. - Hieronymus Fischer, Jun 25 2007
a(10n+k) = a(n)+k^4, 0<=k<10. - Hieronymus Fischer, Jun 25 2007
Comments