A055029 Number of inequivalent Gaussian primes of norm n.
0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0
Offset: 0
Examples
There are 8 Gaussian primes of norm 5, +-1+-2i and +-2+-i, but only two inequivalent ones (2+-i).
References
- R. K. Guy, Unsolved Problems in Number Theory, A16.
- L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. V.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for Gaussian integers and primes
Programs
-
Haskell
a055029 2 = 1 a055029 n = 2 * a079260 n + a079261 (a037213 n) -- Reinhard Zumkeller, Nov 11 2012
-
Mathematica
a[n_ /; PrimeQ[n] && Mod[n, 4] == 1] = 2; a[2] = 1; a[n_ /; (p = Sqrt[n]; PrimeQ[p] && Mod[p, 4] == 3)] = 1; a[] = 0; Table[a[n], {n, 0, 100}] (* _Jean-François Alcover, Oct 25 2011, after Franklin T. Adams-Watters *)
-
PARI
a(n)=if(isprime(n), if(n%4==1, 2, n==2), if(issquare(n, &n) && isprime(n) && n%4==3, 1, 0)) \\ Charles R Greathouse IV, Feb 07 2017
Formula
a(n) = A055028(n)/4.
a(n) = 2 if n is a prime = 1 (mod 4); a(n) = 1 if n is 2, or p^2 where p is a prime = 3 (mod 4); a(n) = 0 otherwise. - Franklin T. Adams-Watters, May 05 2006
Extensions
More terms from Reiner Martin, Jul 20 2001
Comments