cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055039 Numbers of the form 2^(2i+1)*(8j+7).

Original entry on oeis.org

14, 30, 46, 56, 62, 78, 94, 110, 120, 126, 142, 158, 174, 184, 190, 206, 222, 224, 238, 248, 254, 270, 286, 302, 312, 318, 334, 350, 366, 376, 382, 398, 414, 430, 440, 446, 462, 478, 480, 494, 504, 510, 526, 542, 558, 568, 574, 590, 606, 622
Offset: 1

Views

Author

N. J. A. Sloane, Jun 01 2000

Keywords

Comments

The numbers not of the form x^2+y^2+2z^2.
Numbers of the form 6*x^2 + 8*x^2*(2*y -1). (Steve Waterman).
These are the numbers not occurring as norms in the face-centered cubic lattice (cf. A004015).
Numbers whose base 4 representation ends in 3,2 followed by some number of zeros. - Franklin T. Adams-Watters, Dec 04 2006
Numbers k such that the k-th coefficient of eta(x)^4/eta(x^4) is 0 where eta is the Dedekind eta function. - Benoit Cloitre, Mar 15 2025
The asymptotic density of this sequence is 1/12. - Amiram Eldar, Mar 29 2025

Examples

			In base 4: 32, 132, 232, 320, 332, 1032, 1132, 1232, 1320, 1332, 2032, ...
		

Crossrefs

Equals twice A004215. Not the same as A044075 - see A124169.
Complement of A000401.
Cf. A004015.

Programs

  • Mathematica
    Select[Range[650], Mod[# / 4^IntegerExponent[#, 4], 16] == 14 &] (* Amiram Eldar, Mar 29 2025 *)
  • Python
    from itertools import count, islice
    def A055039_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:(m:=(~n&n-1).bit_length())&1 and (n>>m)&7==7,count(max(startvalue,1)))
    A055039_list = list(islice(A055039_gen(),30)) # Chai Wah Wu, Jul 09 2022
    
  • Python
    def A055039(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(((x>>i)-7>>3)+1 for i in range(1,x.bit_length(),2))
        return bisection(f,n,n) # Chai Wah Wu, Feb 24 2025