A055039 Numbers of the form 2^(2i+1)*(8j+7).
14, 30, 46, 56, 62, 78, 94, 110, 120, 126, 142, 158, 174, 184, 190, 206, 222, 224, 238, 248, 254, 270, 286, 302, 312, 318, 334, 350, 366, 376, 382, 398, 414, 430, 440, 446, 462, 478, 480, 494, 504, 510, 526, 542, 558, 568, 574, 590, 606, 622
Offset: 1
Examples
In base 4: 32, 132, 232, 320, 332, 1032, 1132, 1232, 1320, 1332, 2032, ...
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
- L. E. Dickson, Integers represented by positive ternary quadratic forms, Bull. Amer. Math. Soc. 33 (1927), 63-70.
- L. J. Mordell, A new Waring's problem with squares of linear forms, Quart. J. Math., 1 (1930), 276-288 (see p. 283).
- Steve Waterman, Missing numbers formula.
Crossrefs
Programs
-
Mathematica
Select[Range[650], Mod[# / 4^IntegerExponent[#, 4], 16] == 14 &] (* Amiram Eldar, Mar 29 2025 *)
-
Python
from itertools import count, islice def A055039_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n:(m:=(~n&n-1).bit_length())&1 and (n>>m)&7==7,count(max(startvalue,1))) A055039_list = list(islice(A055039_gen(),30)) # Chai Wah Wu, Jul 09 2022
-
Python
def A055039(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(((x>>i)-7>>3)+1 for i in range(1,x.bit_length(),2)) return bisection(f,n,n) # Chai Wah Wu, Feb 24 2025
Comments