cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055040 Numbers of the form 3^(2i+1)*(3*j+2).

Original entry on oeis.org

6, 15, 24, 33, 42, 51, 54, 60, 69, 78, 87, 96, 105, 114, 123, 132, 135, 141, 150, 159, 168, 177, 186, 195, 204, 213, 216, 222, 231, 240, 249, 258, 267, 276, 285, 294, 297, 303, 312, 321, 330, 339, 348, 357, 366, 375, 378, 384, 393, 402, 411
Offset: 1

Views

Author

N. J. A. Sloane, Jun 01 2000

Keywords

Comments

Numbers not of the form x^2+y^2+3z^2.
Numbers whose squarefree part is congruent to 6 modulo 9. - Peter Munn, May 17 2020
The asymptotic density of this sequence is 1/8. - Amiram Eldar, Mar 08 2021

Crossrefs

Equals 3*A055048(n).
Intersection of A145204 and A189715.
Complement of A055041 with respect to A145204\{0}.
Complement of A055047 with respect to A189715.
Cf. A007913.

Programs

  • Haskell
    a055040 n = a055040_list !! (n-1)
    a055040_list = map (* 3) a055048_list
    -- Reinhard Zumkeller, Apr 07 2012
    
  • Mathematica
    max = 500; Select[ Union[ Flatten[ Table[3^(2*i + 1)*(3*j + 2), {i, 0, Ceiling[ Log[max/6]/Log[9]]}, {j, 0, Ceiling[(max/9^i - 6)/9]}]]], # <= max &] (* Jean-François Alcover, Oct 13 2011 *)
  • Python
    from sympy import integer_log
    def A055040(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((x//9**i-2)//3+1 for i in range(integer_log(x,9)[0]+1))
        return bisection(f,n,n)*3 # Chai Wah Wu, Feb 14 2025

Formula

G.f.: [x(x+2)(x^2+x+1)(x^7+x^3+1)]/(x^11-x^10-x+1) (conjectured).