A055094 Binary encoding of quadratic residue set of n. L(1/n) is the most significant bit, L(n-1/n) is the least significant bit, i.e., the rows of A055088 interpreted as binary numbers.
0, 1, 2, 4, 9, 22, 52, 72, 146, 313, 738, 1156, 2829, 6772, 9520, 18496, 53643, 75154, 162438, 312328, 600116, 1513186, 4023888, 4737152, 9741609, 23182093, 38478994, 76286020, 166236537, 311977264, 921787428, 1212203072, 2962424994
Offset: 1
Keywords
Programs
-
Maple
A055094 := proc(n) local i, z; z := 0; for i from 1 to n-1 do z := z*2; if (1 = numtheory[quadres](i, n)) then z := z + 1; fi; od; return z; end proc:
-
Mathematica
a[n_] := With[{rr = Table[Mod[k^2, n], {k, 1, n - 1}] // Union}, Boole[ MemberQ[rr, #]]& /@ Range[n - 1]] // FromDigits[#, 2]&; Array[a, 40] (* Jean-François Alcover, Mar 05 2016*)
-
PARI
{a(n)=sum(k=1, n-1, 2^(k-1)*(0
Michael Somos, Oct 14 2006 */ -
Sage
def A055094(n) : Q = quadratic_residues(n) z = 0 for i in (1..n-1) : z = z*2 if i in Q : z += 1 return z [A055094(n) for n in (1..33)] # Peter Luschny, Aug 08 2012
Formula
a(n) = qrs2bincode(n)
Comments