cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055094 Binary encoding of quadratic residue set of n. L(1/n) is the most significant bit, L(n-1/n) is the least significant bit, i.e., the rows of A055088 interpreted as binary numbers.

Original entry on oeis.org

0, 1, 2, 4, 9, 22, 52, 72, 146, 313, 738, 1156, 2829, 6772, 9520, 18496, 53643, 75154, 162438, 312328, 600116, 1513186, 4023888, 4737152, 9741609, 23182093, 38478994, 76286020, 166236537, 311977264, 921787428, 1212203072, 2962424994
Offset: 1

Views

Author

Antti Karttunen, Apr 04 2000

Keywords

Comments

L(a/n) stands for generalized Legendre symbol, with value = 1 only if a is a quadratic residue of n.

Crossrefs

Programs

  • Maple
    A055094 := proc(n)
        local i, z;
        z := 0;
        for i from 1 to n-1 do
            z := z*2;
            if (1 = numtheory[quadres](i, n)) then
                z := z + 1;
            fi;
        od;
        return z;
    end proc:
  • Mathematica
    a[n_] := With[{rr = Table[Mod[k^2, n], {k, 1, n - 1}] // Union}, Boole[ MemberQ[rr, #]]& /@ Range[n - 1]] // FromDigits[#, 2]&; Array[a, 40] (* Jean-François Alcover, Mar 05 2016*)
  • PARI
    {a(n)=sum(k=1, n-1, 2^(k-1)*(0Michael Somos, Oct 14 2006 */
    
  • Sage
    def A055094(n) :
        Q = quadratic_residues(n)
        z = 0
        for i in (1..n-1)  :
            z = z*2
            if i in Q : z += 1
        return z
    [A055094(n) for n in (1..33)] # Peter Luschny, Aug 08 2012

Formula

a(n) = qrs2bincode(n)