cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055140 Triangle read by rows: T(n, k) = number of matchings of 2n people with partners (of either sex) such that exactly k couples are left together.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 8, 6, 0, 1, 60, 32, 12, 0, 1, 544, 300, 80, 20, 0, 1, 6040, 3264, 900, 160, 30, 0, 1, 79008, 42280, 11424, 2100, 280, 42, 0, 1, 1190672, 632064, 169120, 30464, 4200, 448, 56, 0, 1, 20314880, 10716048, 2844288, 507360, 68544, 7560, 672, 72, 0, 1
Offset: 0

Views

Author

Christian G. Bower, May 09 2000

Keywords

Comments

T is an example of the group of matrices outlined in the table in A132382--the associated matrix for aC(1,1). The e.g.f. for the row polynomials is exp(x*t) * exp(-x) * (1-2*x)^(-1/2). T(n,k) = Binomial(n,k)* s(n-k) where s = A053871 with an e.g.f. of exp(-x) * (1-2*x)^(-1/2) which is the reciprocal of the e.g.f. of A055142. The row polynomials form an Appell sequence. Tom Copeland, Sep 10 2008
A231846 provides a refinement of this array. - Tom Copeland, Oct 12 2016

Examples

			Triangle T(n,k) starts:
     1;
     0,    1;
     2,    0,   1;
     8,    6,   0,   1;
    60,   32,  12,   0,  1;
   544,  300,  80,  20,  0, 1;
  6040, 3264, 900, 160, 30, 0, 1;
  ...
		

Crossrefs

First column is A053871.
Row sums are A001147.

Programs

  • Maple
    g[0] := 1: g[1] := 0: for n from 2 to 20 do g[n] := (2*(n-1))*(g[n-1]+g[n-2]) end do: T := proc (n, k) options operator, arrow; g[n-k]*binomial(n, k) end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form; Emeric Deutsch, Jan 24 2009
  • Mathematica
    Table[(-1)^# HypergeometricPFQ[{1/2, -#}, {}, 2] Binomial[n, k] &[n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jul 10 2019, after Eric W. Weisstein at A053871 *)

Formula

T(n, k) = A053871(n-k)*binomial(n, k).
From Tom Copeland, Oct 12 2016: (Start)
E.g.f.: e^(xt) e^(-t) (1-2t)^(-1/2) = e^(p.(x)*t)(from my 2008 comment).
Row sums are A001147.
L = D = d/dx and R = x + d[log[e^(L)(1-2L)^(-1/2)]]/dL = x - 1 + 1/(1-2D) = x + 2D + (2D)^2 + (2D)^3 + ... are the lowering and raising operators, i.e., L p_n(x) = n * p_(n-1)(x) and R p_n(x) = p_(n+1)(x); e.g., L p_2(x) = D (2 + x^2) = 2 x = 2 p_1(x) and R P_2(x) = (x + 2D + 4D^2 + ...) (2 + x^2) = 2x + x^3 + 4x + 8 = 8 + 6x + x^3 = p_3(x).
Another generator is (1-2D)^(-1/2) e^(-D) x^n = (1-2D)^(-1/2) (x-1)^n = p_n(x). For example, (1-2D)^(-1/2)(x-1)^2 = (1 + D + 3 D^2/2 + ...) (x-1)^2 = (x-1)^2 + 2(x-1) + 3 = 2 + x^2 = p_2(x).
Umbral binomial convolution gives p_n(x) = (a. + x)^n = sum_{k = 0,..,n} C(n,k) a_(n-k) * x^k with (a.)^k = a_k = A053871(k).
The Appell sequence of umbral compositional inverses has the e.g.f. e^(xt) e^t (1-2t)^(1/2) associated with A055142. Cf. A231846 for a definition of umbral compositional inversion.
See A132382 and A133314 for more relations.
(End)