A055211 Lesser Fortunate numbers.
3, 7, 11, 13, 17, 29, 23, 43, 41, 73, 59, 47, 89, 67, 73, 107, 89, 101, 127, 97, 83, 89, 97, 251, 131, 113, 151, 263, 251, 223, 179, 389, 281, 151, 197, 173, 239, 233, 191, 223, 223, 293, 593, 293, 457, 227, 311, 373, 257, 307, 313, 607, 347, 317, 307, 677, 467
Offset: 2
Keywords
Examples
a(3) = 7 since 2*3*5 = 30, 30-1 = 29, previous prime is 23, 30-23 = 7.
Links
- Pierre CAMI, Table of n, a(n) for n=2..2000
- Cyril Banderier, Conjecture checked for n<1000 [It has been reported that this data contains errors]
- Pierre CAMI, PFGW Script
- Antonín Čejchan, Michal Křížek, and Lawrence Somer, On Remarkable Properties of Primes Near Factorials and Primorials, Journal of Integer Sequences, Vol. 25 (2022), Article 22.1.4.
Programs
-
Maple
for n from 2 to 60 do printf(`%d,`,product(ithprime(j), j=1..n) - prevprime(product(ithprime(j), j=1..n)-1)) od:
-
Mathematica
PrevPrime[ n_Integer ] := Module[ {k = n - 1}, While[ ! PrimeQ[ k ], k-- ]; k ]; Primorial[ n_Integer ] := Module[ {k = Product[ Prime[ j ], {j, 1, n} ]}, k ]; LF[ n_Integer ] := (p = Primorial[ n ] - 1; q = PrevPrime[ p ]; p - q + 1); Table[ LF[ n ], {n, 2, 60} ] a[2]=3; a[n_] := (For[m=(Prime[n+1]+1)/2, !PrimeQ[Product[Prime[k], {k, n}] - 2m+1], m++ ]; 2m-1); Table[a[n], {n, 2, 60}]
Formula
a(n) = 1 + the difference between the n-th primorial less one and the previous prime.
From Pierre CAMI, Aug 19 2017: (Start)
Limit_{N->oo} (Sum_{n=2..N} a(n)) / (Sum_{n=2..N} prime(n)) = Pi/2.
Floor(a(n) / prime(n)) is always < 8. (End)
Conjecture: Limit_{N->oo} (Sum_{n=2..N} a(n)) / (Sum_{n=2..N} prime(n)) = 3/2. - Alain Rocchelli, Nov 07 2022
Comments