cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055216 Triangle T(n,k) by rows, n >= 0, 0<=k<=n: T(n,k) = Sum_{i=0..n-k} binomial(n-k,i) *Sum_{j=0..k-i} binomial(i,j).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 3, 1, 1, 5, 10, 8, 3, 1, 1, 6, 15, 17, 9, 3, 1, 1, 7, 21, 31, 23, 9, 3, 1, 1, 8, 28, 51, 50, 26, 9, 3, 1, 1, 9, 36, 78, 96, 66, 27, 9, 3, 1, 1, 10, 45, 113, 168, 147, 76, 27, 9, 3, 1, 1, 11, 55, 157, 274, 294, 192, 80, 27, 9, 3, 1
Offset: 0

Views

Author

Clark Kimberling, May 07 2000

Keywords

Comments

T(n,k) is the maximal number of different sequences that can be obtained from a ternary sequence of length n by deleting k symbols.
T(i,j) is the number of paths from (0,0) to (i-j,j) using steps (1 unit right) or (1 unit right and 1 unit up) or (1 unit right and 2 units up).
If m >= 1 and n >= 2, then T(m+n-1,m) is the number of strings (s(1),s(2),...,s(n)) of nonnegative integers satisfying s(n)=m and 0<=s(k)-s(k-1)<=2 for k=2,3,...,n.
T(n,k) is the number of 1100-avoiding 0-1 sequences of length n containing k good 1's. A 1 is bad if it is immediately followed by two or more 1's and then a 0; otherwise it is good. In particular, a 1 with no 0's to its right is good. For example, 110101110111 is 1100-avoiding and only the 1 in position 6 is bad and T(4,3) counts 0111, 1011, 1101. - David Callan, Jul 25 2005
The matrix inverse starts:
1;
-1,1;
1,-2,1;
-1,3,-3,1;
1,-4,6,-4,1;
-2,8,-13,11,-5,1;
8,-30,45,-36,18,-6,1;
-36,137,-207,163,-78,27,-7,1;
192,-732,1112,-884,425,-144,38,-8,1;
- R. J. Mathar, Mar 12 2013

Examples

			8=T(5,2) counts these strings: 013, 023, 113, 123, 133, 223, 233, 333.
Rows:
1;
1,1;
1,2,1;
1,3,3,1;
1,4,6,3,1;
...
		

Crossrefs

Row sums: A008937. Central numbers: T(2n, n)=A027914(n) for n >= 0.

Programs

  • Maple
    A055216 := proc(n,k)
        a := 0 ;
        for i from 0 to n-k do
            a := a+binomial(n-k,i)*add(binomial(i,j),j=0..k-i) ;
        end do:
        a ;
    end proc: # R. J. Mathar, Mar 13 2013
  • Mathematica
    T[n_, k_] := Sum[Binomial[n - k, i]*Sum[Binomial[i, j], {j, 0, k - i}], {i, 0, n - k}];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 28 2019 *)

Formula

T(i, 0)=T(i, i)=1 for i >= 0; T(i, 1)=T(i, i-1)=i for i >= 2; T(i, j)=T(i-1, j)+T(i-2, j-1)+T(i-3, j-2) for 2<=j<=i-2, i >= 3.

Extensions

Better description and references from N. J. A. Sloane, Aug 05 2000