cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A055218 a(n) = T(2*n+2,n), array T as in A055216.

Original entry on oeis.org

1, 4, 15, 51, 168, 540, 1711, 5365, 16698, 51679, 159250, 489048, 1497681, 4576140, 13955895, 42493677, 129211818, 392441049, 1190716836, 3609608838, 10933915743, 33097421223, 100126350090, 302737691646, 914897836063
Offset: 0

Views

Author

Clark Kimberling, May 07 2000

Keywords

Crossrefs

Cf. A055216.

Programs

  • Mathematica
    Table[Sum[Binomial[n+2,i]*Sum[Binomial[i,j],{j,0,n-i}],{i,0,n+2}],{n,0,20}] (* Vaclav Kotesovec, May 24 2014 *)
  • PARI
    x='x+O('x^50); Vec(((2*x-1)*sqrt(-3*x^2-2*x+1)+2*x^3-3*x+ 1)/(6*x^6 +x^5 + sqrt(-3*x^2-2*x+1)*(3*x^4-x^3)-4*x^4+x^3)) \\ G. C. Greubel, May 23 2017

Formula

G.f.: ((2*x-1) *sqrt(-3*x^2-2*x+1)+2*x^3-3*x+1)/ (6*x^6+x^5 +sqrt(-3*x^2-2*x+1) *(3*x^4-x^3)-4*x^4+x^3). - Vladimir Kruchinin, May 24 2014
a(n) ~ 3^(n+2)/2 * (1-3*sqrt(3)/(2*sqrt(Pi*n))). - Vaclav Kotesovec, May 24 2014

A055219 T(2n+3,n), array T as in A055216.

Original entry on oeis.org

1, 5, 21, 78, 274, 927, 3061, 9933, 31824, 100972, 317942, 995088, 3099105, 9612735, 29715525, 91595391, 281643480, 864189486, 2646805668, 8093543439, 24713953515, 75370741506, 229604257846, 698754428388, 2124616182139
Offset: 0

Views

Author

Clark Kimberling, May 07 2000

Keywords

Formula

Apparently a(n)=sum((-1)^j*binomial(n+3, j)*binomial(2n+3-3j, n+3), j=0..floor(n/3)). - Emeric Deutsch, Mar 13 2004

A055220 T(2n+4,n), array T as in A055216.

Original entry on oeis.org

1, 6, 28, 113, 423, 1507, 5193, 17469, 57720, 188098, 606336, 1937490, 6146895, 19386189, 60836271, 190104957, 591899346, 1837128933, 5686494333, 17559366768, 54107166250, 166412478896, 510963917688, 1566546588694
Offset: 0

Views

Author

Clark Kimberling, May 07 2000

Keywords

A055221 T(2n+5,n), array T as in A055216.

Original entry on oeis.org

1, 7, 36, 157, 625, 2343, 8427, 29406, 100296, 336066, 1110300, 3626559, 11734557, 37673295, 120150909, 381040101, 1202559732, 3779328996, 11833845967, 36934571140, 114947180946, 356828242618, 1105180433704
Offset: 0

Views

Author

Clark Kimberling, May 07 2000

Keywords

A055222 T(2n+6,n), array T as in A055216.

Original entry on oeis.org

1, 8, 45, 211, 891, 3510, 13170, 47672, 167898, 578769, 1961103, 6552549, 21641343, 70784235, 229620285, 739640331, 2368022638, 7541358405, 23905443556, 75468582776, 237388273398, 744299007994, 2326899224352
Offset: 0

Views

Author

Clark Kimberling, May 07 2000

Keywords

A008937 a(n) = Sum_{k=0..n} T(k) where T(n) are the tribonacci numbers A000073.

Original entry on oeis.org

0, 1, 2, 4, 8, 15, 28, 52, 96, 177, 326, 600, 1104, 2031, 3736, 6872, 12640, 23249, 42762, 78652, 144664, 266079, 489396, 900140, 1655616, 3045153, 5600910, 10301680, 18947744, 34850335, 64099760, 117897840, 216847936, 398845537, 733591314, 1349284788
Offset: 0

Views

Author

N. J. A. Sloane, Alejandro Teruel (teruel(AT)usb.ve)

Keywords

Comments

a(n+1) is the number of n-bit sequences that avoid 1100. - David Callan, Jul 19 2004 [corrected by Kent E. Morrison, Jan 08 2019]. Also the number of n-bit sequences avoiding one of the patterns 1000, 0011, 1110, ... or any binary string of length 4 without overlap at beginning and end. Strings where it is not true are: 1111, 1010, 1001, ... and their bitwise complements. - Alois P. Heinz, Jan 09 2019
Row sums of Riordan array (1/(1-x), x(1+x+x^2)). - Paul Barry, Feb 16 2005
Diagonal sums of Riordan array (1/(1-x)^2, x(1+x)/(1-x)), A104698.
A shifted version of this sequence can be found in Eqs. (4) and (3) on p. 356 of Dunkel (1925) with r = 3. (Equation (3) follows equation (4) in the paper!) The whole paper is a study of the properties of this and other similar sequences indexed by the parameter r. For r = 2, we get a shifted version of A000071. For r = 4, we get a shifted version of A107066. For r = 5, we get a shifted version of A001949. For r = 6, we get a shifted version of A172316. See also the table in A172119. - Petros Hadjicostas, Jun 14 2019
Officially, to match A000073, this should start with a(0)=a(1)=0, a(2)=1. - N. J. A. Sloane, Sep 12 2020
Numbers with tribonacci representation that is a prefix of 100100100100... . - Jeffrey Shallit, Jul 10 2024

Examples

			G.f. = x + 2*x^2 + 4*x^3 + 8*x^4 + 15*x^5 + 28*x^6 + 52*x^7 + 96*x^8 + 177*x^9 + ... [edited by _Petros Hadjicostas_, Jun 12 2019]
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 41.

Crossrefs

Partial sums of A000073. Cf. A000213, A018921, A027084, A077908, A209972.
Row sums of A055216.
Column k = 1 of A140997 and second main diagonal of A140994.

Programs

  • GAP
    a:=[0,1,1];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Sep 13 2019
  • Haskell
    a008937 n = a008937_list !! n
    a008937_list = tail $ scanl1 (+) a000073_list
    -- Reinhard Zumkeller, Apr 07 2012
    
  • Magma
    [ n eq 1 select 0 else n eq 2 select 1 else n eq 3 select 2 else n eq 4 select 4 else 2*Self(n-1)-Self(n-4): n in [1..40] ]; // Vincenzo Librandi, Aug 21 2011
    
  • Maple
    A008937 := proc(n) option remember; if n <= 3 then 2^n else 2*procname(n-1)-procname(n-4) fi; end;
    a:= n-> (Matrix([[1,1,0,0], [1,0,1,0], [1,0,0,0], [1,0,0,1]])^n)[4,1]: seq(a(n), n=0..50); # Alois P. Heinz, Jul 24 2008
  • Mathematica
    CoefficientList[Series[x/(1-2x+x^4), {x, 0, 40}], x]
    Accumulate[LinearRecurrence[{1,1,1},{0,1,1},40]] (* Harvey P. Dale, Dec 04 2017 *)
    LinearRecurrence[{2, 0, 0, -1},{0, 1, 2, 4},40] (* Ray Chandler, Mar 01 2024 *)
  • PARI
    {a(n) = if( n<0, polcoeff( - x^3 / (1 - 2*x^3 + x^4) + x * O(x^-n), -n), polcoeff( x / (1 - 2*x + x^4) + x * O(x^n), n))}; /* Michael Somos, Aug 23 2014 */
    
  • PARI
    a(n) = sum(j=0, n\2, sum(k=0, j, binomial(n-2*j,k+1)*binomial(j,k)*2^k)); \\ Michel Marcus, Sep 08 2017
    
  • SageMath
    def A008937_list(prec):
        P = PowerSeriesRing(ZZ, 'x', prec)
        x = P.gen().O(prec)
        return (x/(1-2*x+x^4)).list()
    A008937_list(40) # G. C. Greubel, Sep 13 2019
    

Formula

a(n) = A018921(n-2) = A027084(n+1) + 1.
a(n) = (A000073(n+2) + A000073(n+4) - 1)/2.
From Mario Catalani (mario.catalani(AT)unito.it), Aug 09 2002: (Start)
G.f.: x/((1-x)*(1-x-x^2-x^3)).
a(n) = 2*a(n-1) - a(n-4), a(0) = 0, a(1) = 1, a(2) = 2, a(3) = 4. (End)
a(n) = 1 + a(n-1) + a(n-2) + a(n-3). E.g., a(11) = 1 + 600 + 326 + 177 = 1104. - Philippe LALLOUET (philip.lallouet(AT)orange.fr), Oct 29 2007
a(n) = term (4,1) in the 4 X 4 matrix [1,1,0,0; 1,0,1,0; 1,0,0,0; 1,0,0,1]^n. - Alois P. Heinz, Jul 24 2008
a(n) = -A077908(-n-3). - Alois P. Heinz, Jul 24 2008
a(n) = (A000213(n+2) - 1) / 2. - Reinhard Zumkeller, Apr 07 2012
a(n) = Sum_{j=0..floor(n/2)} Sum_{k=0..j} binomial(n-2j,k+1) *binomial(j,k)*2^k. - Tony Foster III, Sep 08 2017
a(n) = Sum_{k=0..floor(n/2)} (n-2*k)*hypergeom([-k,-n+2*k+1], [2], 2). - Peter Luschny, Nov 09 2017
a(n) = 2^(n-1)*hypergeom([1-n/4, 1/4-n/4, 3/4-n/4, 1/2-n/4], [1-n/3, 1/3-n/3, 2/3-n/3], 16/27) for n > 0. - Peter Luschny, Aug 20 2020
a(n-1) = T(n) + T(n-3) + T(n-6) + ... + T(2+((n-2) mod 3)), for n >= 4, where T is A000073(n+1). - Jeffrey Shallit, Dec 24 2020

A055217 a(n) = sum of the first n coefficients of (1+x+x^2)^n.

Original entry on oeis.org

1, 3, 10, 31, 96, 294, 897, 2727, 8272, 25048, 75747, 228826, 690691, 2083371, 6280650, 18925047, 57002616, 171633840, 516632307, 1554702516, 4677501237, 14069962041, 42314975352, 127240600050, 382555886571, 1150026301089
Offset: 0

Views

Author

Clark Kimberling, May 07 2000

Keywords

Crossrefs

T(2n+1, n), array T as in A055216.

Programs

  • Haskell
    a055217 n = sum $ take (n + 1) $ a027907_row (n + 1)
    -- Reinhard Zumkeller, Jan 22 2013
    
  • Maple
    a := n -> simplify((3^(n+1) - GegenbauerC(n+1,-n-1,-1/2))/2):
    seq(a(n), n=0..25); # Peter Luschny, May 12 2016
  • Mathematica
    Total/@Table[Take[CoefficientList[Expand[(1+x+x^2)^n],x],n],{n,30}] (* Harvey P. Dale, Aug 14 2011 *)
  • Maxima
    a(n):=sum(sum(binomial(n,j)*binomial(j,2*j-n-k),j,ceiling((n+k)/2),n),k,1,n); /* Vladimir Kruchinin, Aug 11 2010 */
    
  • PARI
    a(n) = my(v=Vec((1+'x+'x^2)^n)); sum(k=1, n, v[k]);

Formula

From Paul Barry, Jan 20 2008: (Start)
Binomial transform of A117186.
G.f.: (1+x-sqrt(1-2x-3x^2))/(2x*(1-2x-3x^2)).
a(n) = (3^(n+1) + A002426(n+1))/2. (End)
From Vladimir Kruchinin, Aug 11 2010: (Start)
Logarithm g.f.: log(1/(1-x*M(x))) = Sum_{n>0} a(n-1)/n*x^n, M(x) - o.g.f Motzkin numbers (A001006).
a(n) = sum(sum(binomial(n,j)*binomial(j,2*j-n-k),j,ceiling((n+k)/2),n),k,1,n), n>0. (End)
Conjecture: (n+1)*a(n) -(5*n+1)*a(n-1) +3*(n-1)*a(n-2) +9*(n-1)*a(n-3)=0. - R. J. Mathar, Nov 14 2011
a(n) = 3^n * 3/2 + O(3^n/sqrt(n)). - Charles R Greathouse IV, Dec 02 2015
From Peter Luschny, May 12 2016: (Start)
a(n) = (3^(n+1) - hypergeom([-(n+1)/2, -n/2], [1], 4))/2.
a(n) = (3^(n+1) - GegenbauerC(n+1,-n-1,-1/2))/2. (End)

Extensions

New description from Paul D. Hanna, Oct 09 2003
Showing 1-7 of 7 results.