A073769 Duplicate of A008937.
0, 1, 2, 4, 8, 15, 28, 52, 96, 177, 326, 600, 1104, 2031, 3736, 6872, 12640, 23249
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
G.f. = x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 13*x^7 + 24*x^8 + 44*x^9 + 81*x^10 + ...
a:=[0,0,1];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Oct 24 2018
a000073 n = a000073_list !! n a000073_list = 0 : 0 : 1 : zipWith (+) a000073_list (tail (zipWith (+) a000073_list $ tail a000073_list)) -- Reinhard Zumkeller, Dec 12 2011
[n le 3 select Floor(n/3) else Self(n-1)+Self(n-2)+Self(n-3): n in [1..70]]; // Vincenzo Librandi, Jan 29 2016
a:= n-> (<<0|1|0>, <0|0|1>, <1|1|1>>^n)[1,3]: seq(a(n), n=0..40); # Alois P. Heinz, Dec 19 2016 # second Maple program: A000073:=proc(n) option remember; if n <= 1 then 0 elif n=2 then 1 else procname(n-1)+procname(n-2)+procname(n-3); fi; end; # N. J. A. Sloane, Aug 06 2018
CoefficientList[Series[x^2/(1 - x - x^2 - x^3), {x, 0, 50}], x] a[0] = a[1] = 0; a[2] = 1; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[n - 3]; Array[a, 36, 0] (* Robert G. Wilson v, Nov 07 2010 *) LinearRecurrence[{1, 1, 1}, {0, 0, 1}, 60] (* Vladimir Joseph Stephan Orlovsky, May 24 2011 *) a[n_] := SeriesCoefficient[If[ n < 0, x/(1 + x + x^2 - x^3), x^2/(1 - x - x^2 - x^3)], {x, 0, Abs @ n}] (* Michael Somos, Jun 01 2013 *) Table[-RootSum[-1 - # - #^2 + #^3 &, -#^n - 9 #^(n + 1) + 4 #^(n + 2) &]/22, {n, 0, 20}] (* Eric W. Weisstein, Nov 09 2017 *)
A000073[0]:0$ A000073[1]:0$ A000073[2]:1$ A000073[n]:=A000073[n-1]+A000073[n-2]+A000073[n-3]$ makelist(A000073[n], n, 0, 40); /* Emanuele Munarini, Mar 01 2011 */
{a(n) = polcoeff( if( n<0, x / ( 1 + x + x^2 - x^3), x^2 / ( 1 - x - x^2 - x^3) ) + x * O(x^abs(n)), abs(n))}; /* Michael Somos, Sep 03 2007 */
my(x='x+O('x^99)); concat([0, 0], Vec(x^2/(1-x-x^2-x^3))) \\ Altug Alkan, Apr 04 2016
a(n)=([0,1,0;0,0,1;1,1,1]^n)[1,3] \\ Charles R Greathouse IV, Apr 18 2016, simplified by M. F. Hasler, Apr 18 2018
def a(n, adict={0:0, 1:0, 2:1}): if n in adict: return adict[n] adict[n]=a(n-1)+a(n-2)+a(n-3) return adict[n] # David Nacin, Mar 07 2012 from functools import cache @cache def A000073(n: int) -> int: if n <= 1: return 0 if n == 2: return 1 return A000073(n-1) + A000073(n-2) + A000073(n-3) # Peter Luschny, Nov 21 2022
G.f. = 1 + x + x^2 + 3*x^3 + 5*x^4 + 9*x^5+ 17*x^6 + 31*x^7 + 57*x^8 + ...
a:=[1,1,1];; for n in [4..45] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Jun 09 2019
a000213 n = a000213_list !! n a000213_list = 1 : 1 : 1 : zipWith (+) a000213_list (tail $ zipWith (+) a000213_list (tail a000213_list)) -- Reinhard Zumkeller, Apr 07 2012
I:=[1,1,1]; [n le 3 select I[n] else Self(n-1) + Self(n-2) + Self(n-3): n in [1..45]]; // G. C. Greubel, Jun 09 2019
K:=(1-z^2)/(1-z-z^2-z^3): Kser:=series(K, z=0, 45): seq((coeff(Kser, z, n)), n= 0..34); # Zerinvary Lajos, Nov 08 2007 A000213:=(z-1)*(1+z)/(-1+z+z**2+z**3); # Simon Plouffe in his 1992 dissertation
LinearRecurrence[{1, 1, 1}, {1, 1, 1}, 45] (* Harvey P. Dale, May 23 2011 *) Table[RootSum[-1 - # - #^2 + #^3 &, 2 #^n - 4 #^(n + 1) + 3 #^(n + 2) &]/11, {n, 0, 45}] (* Eric W. Weisstein, Apr 10 2018 *) CoefficientList[Series[(1-x)(1+x)/(1-x-x^2-x^3), {x, 0, 45}], x] (* Eric W. Weisstein, Apr 10 2018 *)
a(n):=sum(sum(binomial(n-2*m+1,m-i)*binomial(n-2*m+i,n-2*m), i,0,m),m,0,(n)/2); /* Vladimir Kruchinin, Dec 17 2011 */
a(n)=tn=[1,1,1;1,0,0;0,1,0]^n;tn[3,1]+tn[3,2]+tn[3,3] \\ Charles R Greathouse IV, Feb 18 2011
alst = [1, 1, 1] [alst.append(alst[n-1] + alst[n-2] + alst[n-3]) for n in range(3, 37)] print(alst) # Michael S. Branicky, Sep 21 2021
((1-x^2)/(1-x-x^2-x^3)).series(x, 45).coefficients(x, sparse=False) # G. C. Greubel, Jun 09 2019
Triangle begins: 1 1 1 1 2 1 1 2 4 1 1 2 4 8 1 1 2 4 9 15 1 1 2 4 9 19 28 1 1 2 4 9 19 40 52 1 1 2 4 9 19 41 83 96 1 1 2 4 9 19 41 88 170 177 1 1 2 4 9 19 41 88 188 345 326 1 1 2 4 9 19 41 88 189 400 694 600 1 1 2 4 9 19 41 88 189 406 846 1386 1104 1 ... [corrected by _Petros Hadjicostas_, Jun 12 2019] E.g., G(12, 9) = G(9, 7) + G(9, 6) + G(10, 7) + G(11, 8) = 170 + 88 + 188 + 400 = 846.
G := proc(n,k) if k=0 or n =k then 1; elif k= 1 then 2 ; elif k =2 then 4; elif k > n or k < 0 then 0 ; else procname(n-3,k-2)+procname(n-3,k-3)+procname(n-2,k-2)+procname(n-1,k-1) ; end if; end proc: seq(seq(G(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Apr 14 2010
nlim = 50; Do[G[n, 0] = 1, {n, 0, nlim}]; Do[G[n, n] = 1, {n, 1, nlim}]; Do[G[n + 2, 1] = 2, {n, 0, nlim}]; Do[G[n + 3, 2] = 4, {n, 0, nlim}]; Do[G[n + 4, m] = G[n + 1, m - 2] + G[n + 1, m - 3] + G[n + 2, m - 2] + G[n + 3, m - 1], {n, 0, nlim}, {m, 3, n + 3}]; A140994 = {}; For[n = 0, n <= nlim, n++, For[k = 0, k <= n, k++, AppendTo[A140994, G[n, k]]]]; A140994 (* Robert Price, Aug 19 2019 *)
Triangle begins: 1 1 1 1 2 1 1 4 2 1 1 8 4 2 1 1 15 9 4 2 1 1 28 19 9 4 2 1 1 52 40 19 9 4 2 1 1 96 83 41 19 9 4 2 1 1 177 170 88 41 19 9 4 2 1 1 326 345 188 88 41 19 9 4 2 1 1 600 694 400 189 88 41 19 9 4 2 1 ... E.g., G(14, 2) = G(11, 1) + G(11, 2) + G(12, 2) + G(13, 2) = 600 + 694 + 1386 + 2751 = 5431.
nlim = 50; Do[G[n, 0] = 1, {n, 0, nlim}]; Do[G[n + 1, n + 1] = 1, {n, 0, nlim}]; Do[G[n + 2, n + 1] = 2, {n, 0, nlim}]; Do[G[n + 3, n + 1] = 4, {n, 0, nlim}]; Do[G[n + 4, m] = G[n + 1, m - 1] + G[n + 1, m] + G[n + 2, m] + G[n + 3, m], {n, 0, nlim}, {m, 1, n + 1}]; A140997 = {}; For[n = 0, n <= nlim, n++, For[k = 0, k <= n, k++, AppendTo[A140997, G[n, k]]]]; A140997 (* Robert Price, Aug 25 2019 *)
Triangle begins: n\k|....0....1....2....3....4....5....6....7....8....9...10 ---|------------------------------------------------------- 0..|....1 1..|....1....1 2..|....1....2....1 3..|....1....3....2....1 4..|....1....4....4....2....1 5..|....1....5....7....4....2....1 6..|....1....6...12....8....4....2....1 7..|....1....7...20...15....8....4....2....1 8..|....1....8...33...28...16....8....4....2....1 9..|....1....9...54...52...31...16....8....4....2....1 10.|....1...10...88...96...60...32...16....8....4....2....1
T:= function(n,k) if k=0 and k=n then return 1; elif k<0 or k>n then return 0; else return 1 + Sum([1..k], j-> T(n-j,k)); fi; end; Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Jul 27 2019
T:= func< n,k | (&+[(-1)^j*2^(n-k-(k+1)*j)*Binomial(n-k-k*j, n-k-(k+1)*j): j in [0..Floor((n-k)/(k+1))]]) >; [[T(n,k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Jul 27 2019
for k from 0 to 20 do for n from 0 to 20 do b(n):=sum((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j),j=0..floor(n/(k+1))):od: seq(b(n),n=0..20):od; # Richard Choulet, Jan 31 2010 A172119 := proc(n,k) option remember; if k = 0 then 1; elif k > n then 0; else 1+add(procname(n-k+i,k),i=0..k-1) ; end if; end proc: seq(seq(A172119(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Sep 16 2017
T[, 0] = 1; T[n, n_] = 1; T[n_, k_] /; k>n = 0; T[n_, k_] := T[n, k] = Sum[T[n-k+i, k], {i, 0, k-1}] + 1; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten Table[Sum[(-1)^j*2^(n-k-(k+1)*j)*Binomial[n-k-k*j, n-k-(k+1)*j], {j, 0, Floor[(n-k)/(k+1)]}], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 27 2019 *)
T(n,k) = if(k<0 || k>n, 0, k==1 && k==n, 1, 1 + sum(j=1,k, T(n-j,k))); for(n=1,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 27 2019
@CachedFunction def T(n, k): if (k==0 and k==n): return 1 elif (k<0 or k>n): return 0 else: return 1 + sum(T(n-j, k) for j in (1..k)) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 27 2019
A001949:=1/(z-1)/(z**5+z**4+z**3+z**2+z-1); # Simon Plouffe in his 1992 dissertation
t={0,0,0,0,0};Do[AppendTo[t,t[[-5]]+t[[-4]]+t[[-3]]+t[[-2]]+t[[-1]]+1],{n,40}];t (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *) LinearRecurrence[{2,0,0,0,0,-1},{0,0,0,0,0,1},40] (* Harvey P. Dale, Jan 17 2015 *)
a(n):=sum(sum((-1)^j*binomial(n-5*j-5,k-1)*binomial(n-k-5*j-4,j),j,0,(n-k-4)/5),k,1,n-4); /* Vladimir Kruchinin, Oct 19 2011 */
x='x+O('x^99); concat(vector(5), Vec(x^5/((x-1)*(x^5+x^4+x^3+x^2+x-1)))) \\ Altug Alkan, Oct 04 2017
The Riordan triangle T begins: n\k 0 1 2 3 4 5 6 7 8 9 10 ... ---------------------------------------------------- 0: 1 1: 2 1 2: 3 4 1 3: 4 9 6 1 4: 5 16 19 8 1 5: 6 25 44 33 10 1 6: 7 36 85 96 51 12 1 7: 8 49 146 225 180 73 14 1 8: 9 64 231 456 501 304 99 16 1 9: 10 81 344 833 1182 985 476 129 18 1 10: 11 100 489 1408 2471 2668 1765 704 163 20 1 ... reformatted and extended by _Wolfdieter Lang_, May 13 2025 From _Wolfdieter Lang_, May 13 2025: (Start) Zumkeller recurrence (adapted for offset [0,0]): 19 = T(4, 2) = T(2, 1) + T(3, 1) + T(3,3) = 4 + 9 + 6 = 19. A-sequence recurrence: 19 = T(4, 2) = 1*T(3. 1) + 2*T(3. 2) - 2*T(3, 3) = 9 + 12 - 2 = 19. Z-sequence recurrence: 5 = T(4, 0) = 2*T(3, 0) - 1*T(3, 1) + 2*T(3, 2) - 6*T(3, 3) = 8 - 9 + 12 + 6 = 5. Boas-Buck recurrence: 19 = T(4, 2) = (1/2)*((2 + 0)*T(2, 2) + (2 + 2*2)*T(3, 2)) = (1/2)*(2 + 36) = 19. (End)
a104698 n k = a104698_tabl !! (n-1) !! (k-1) a104698_row n = a104698_tabl !! (n-1) a104698_tabl = [1] : [2,1] : f [1] [2,1] where f us vs = ws : f vs ws where ws = zipWith (+) ([0] ++ us ++ [0]) $ zipWith (+) ([1] ++ vs) (vs ++ [0]) -- Reinhard Zumkeller, Jul 17 2015
A104698 := proc(n, k) add(binomial(k, j)*binomial(n-j+1, n-k-j), j=0..n-k) ; end proc: seq(seq(A104698(n, k), k=0..n), n=0..15); # R. J. Mathar, Sep 04 2011 T := (n, k) -> binomial(n + 1, k + 1)*hypergeom([-k, k - n], [-n - 1], -1): for n from 0 to 9 do seq(simplify(T(n, k)), k = 0..n) od; T := proc(n, k) option remember; if k = 0 then n + 1 elif k = n then 1 else T(n-2, k-1) + T(n-1, k-1) + T(n-1, k) fi end: # Peter Luschny, May 13 2025
u[1, ] = 1; v[1, ] = 1; u[n_, x_] := u[n, x] = x u[n-1, x] + v[n-1, x] + 1; v[n_, x_] := v[n, x] = 2 x u[n-1, x] + v[n-1, x] + 1; Table[CoefficientList[u[n, x], x], {n, 1, 11}] // Flatten (* Jean-François Alcover, Mar 10 2019, after Clark Kimberling *)
T(n,k)=sum(j=0,n-k,binomial(k,j)*binomial(n-j+1,k+1)) \\ Charles R Greathouse IV, Jan 16 2012
Some solutions for 6X4 ..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0 ..0..0..0..1....0..1..1..0....1..1..0..0....0..1..0..0....0..0..0..0 ..0..0..0..0....0..1..0..1....0..0..1..0....0..0..0..0....0..0..0..0 ..0..0..0..0....1..0..1..0....1..0..0..0....0..1..1..0....1..1..0..0 ..1..0..1..0....0..0..0..1....0..0..1..0....0..1..0..0....0..0..0..1 ..0..0..0..0....1..0..1..0....0..1..0..0....1..0..0..1....1..1..1..0
Join[{a=0,b=0,c=1},Table[d=a+b+c+2;a=b;b=c;c=d,{n,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011 *) RecurrenceTable[{a[0]==a[1]==0,a[2]==1,a[n]==a[n-1]+a[n-2]+a[n-3]+2}, a[n],{n,40}] (* or *) LinearRecurrence[{2,0,0,-1},{0,0,1,3},40] (* Harvey P. Dale, Sep 19 2011 *)
Comments