A008937
a(n) = Sum_{k=0..n} T(k) where T(n) are the tribonacci numbers A000073.
Original entry on oeis.org
0, 1, 2, 4, 8, 15, 28, 52, 96, 177, 326, 600, 1104, 2031, 3736, 6872, 12640, 23249, 42762, 78652, 144664, 266079, 489396, 900140, 1655616, 3045153, 5600910, 10301680, 18947744, 34850335, 64099760, 117897840, 216847936, 398845537, 733591314, 1349284788
Offset: 0
G.f. = x + 2*x^2 + 4*x^3 + 8*x^4 + 15*x^5 + 28*x^6 + 52*x^7 + 96*x^8 + 177*x^9 + ... [edited by _Petros Hadjicostas_, Jun 12 2019]
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 41.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Isha Agarwal, Matvey Borodin, Aidan Duncan, Kaylee Ji, Tanya Khovanova, Shane Lee, Boyan Litchev, Anshul Rastogi, Garima Rastogi, and Andrew Zhao, From Unequal Chance to a Coin Game Dance: Variants of Penney's Game, arXiv:2006.13002 [math.HO], 2020.
- Kassie Archer and Noel Bourne, Pattern avoidance in compositions and powers of permutations, arXiv:2505.05218 [math.CO], 2025. See pp. 6, 9.
- Erik Bates, Blan Morrison, Mason Rogers, Arianna Serafini, and Anav Sood, A new combinatorial interpretation of partial sums of m-step Fibonacci numbers, arXiv:2503.11055 [math.CO], 2025. See p. 3.
- Otto Dunkel, Solutions of a probability difference equation, Amer. Math. Monthly, 32 (1925), 354-370; see pp. 356 and 369.
- Jia Huang, A coin flip game and generalizations of Fibonacci numbers, arXiv:2501.07463 [math.CO], 2025. See p. 7.
- Thomas Langley, Jeffrey Liese, and Jeffrey Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011), Article # 11.4.2.
- William Verreault, MacMahon Partition Analysis: a discrete approach to broken stick problems, arXiv:2107.10318 [math.CO], 2021.
- Index entries for linear recurrences with constant coefficients, signature (2,0,0,-1).
-
a:=[0,1,1];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Sep 13 2019
-
a008937 n = a008937_list !! n
a008937_list = tail $ scanl1 (+) a000073_list
-- Reinhard Zumkeller, Apr 07 2012
-
[ n eq 1 select 0 else n eq 2 select 1 else n eq 3 select 2 else n eq 4 select 4 else 2*Self(n-1)-Self(n-4): n in [1..40] ]; // Vincenzo Librandi, Aug 21 2011
-
A008937 := proc(n) option remember; if n <= 3 then 2^n else 2*procname(n-1)-procname(n-4) fi; end;
a:= n-> (Matrix([[1,1,0,0], [1,0,1,0], [1,0,0,0], [1,0,0,1]])^n)[4,1]: seq(a(n), n=0..50); # Alois P. Heinz, Jul 24 2008
-
CoefficientList[Series[x/(1-2x+x^4), {x, 0, 40}], x]
Accumulate[LinearRecurrence[{1,1,1},{0,1,1},40]] (* Harvey P. Dale, Dec 04 2017 *)
LinearRecurrence[{2, 0, 0, -1},{0, 1, 2, 4},40] (* Ray Chandler, Mar 01 2024 *)
-
{a(n) = if( n<0, polcoeff( - x^3 / (1 - 2*x^3 + x^4) + x * O(x^-n), -n), polcoeff( x / (1 - 2*x + x^4) + x * O(x^n), n))}; /* Michael Somos, Aug 23 2014 */
-
a(n) = sum(j=0, n\2, sum(k=0, j, binomial(n-2*j,k+1)*binomial(j,k)*2^k)); \\ Michel Marcus, Sep 08 2017
-
def A008937_list(prec):
P = PowerSeriesRing(ZZ, 'x', prec)
x = P.gen().O(prec)
return (x/(1-2*x+x^4)).list()
A008937_list(40) # G. C. Greubel, Sep 13 2019
A141020
Pascal-like triangle with index of asymmetry y = 4 and index of obliqueness z = 0.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, 4, 2, 1, 1, 16, 8, 4, 2, 1, 1, 32, 16, 8, 4, 2, 1, 1, 63, 33, 16, 8, 4, 2, 1, 1, 124, 67, 33, 16, 8, 4, 2, 1, 1, 244, 136, 67, 33, 16, 8, 4, 2, 1, 1, 480, 276, 136, 67, 33, 16, 8, 4, 2, 1, 1, 944, 560, 276, 136, 67, 33, 16, 8, 4, 2, 1
Offset: 0
Pascal-like triangle with y = 4 and z = 0 begins as follows:
1
1 1
1 2 1
1 4 2 1
1 8 4 2 1
1 16 8 4 2 1
1 32 16 8 4 2 1
1 63 33 16 8 4 2 1
1 124 67 33 16 8 4 2 1
1 244 136 67 33 16 8 4 2 1
1 480 276 136 67 33 16 8 4 2 1
1 944 560 276 136 67 33 16 8 4 2 1
...
Cf.
A001949,
A007318,
A140993,
A140994,
A140995,
A140996,
A140997,
A140998,
A141021,
A141031,
A141064,
A141065,
A141066,
A141067,
A141069,
A141070,
A141072,
A141073.
-
A141020 := proc(n,k) option remember ; if k<0 or k>n then 0 ; elif k=0 or k=n then 1 ; elif k=n-1 then 2 ; elif k=n-2 then 4 ; elif k=n-3 then 8 ; elif k=n-4 then 16 ; else procname(n-1,k) +procname(n-2,k)+procname(n-3,k)+procname(n-4,k) +procname(n-5,k)+procname(n-5,k-1) ; fi; end:
for n from 0 to 20 do for k from 0 to n do printf("%d,",A141020(n,k)) ; od: od: # R. J. Mathar, Sep 19 2008
-
T[n_, k_] := T[n, k] = Which[k < 0 || k > n, 0, k == 0 || k == n, 1, k == n-1, 2, k == n-2, 4, k == n-3, 8, k == n-4, 16, True, T[n-1, k] + T[n-2, k] + T[n-3, k] + T[n-4, k] + T[n-5, k] + T[n-5, k-1]];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 18 2019, after R. J. Mathar *)
A172119
Sum the k preceding elements in the same column and add 1 every time.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 4, 2, 1, 1, 5, 7, 4, 2, 1, 1, 6, 12, 8, 4, 2, 1, 1, 7, 20, 15, 8, 4, 2, 1, 1, 8, 33, 28, 16, 8, 4, 2, 1, 1, 9, 54, 52, 31, 16, 8, 4, 2, 1, 1, 10, 88, 96, 60, 32, 16, 8, 4, 2, 1, 1, 11, 143, 177, 116, 63, 32, 16, 8, 4, 2, 1, 1, 12, 232, 326, 224, 124, 64, 32, 16
Offset: 0
Triangle begins:
n\k|....0....1....2....3....4....5....6....7....8....9...10
---|-------------------------------------------------------
0..|....1
1..|....1....1
2..|....1....2....1
3..|....1....3....2....1
4..|....1....4....4....2....1
5..|....1....5....7....4....2....1
6..|....1....6...12....8....4....2....1
7..|....1....7...20...15....8....4....2....1
8..|....1....8...33...28...16....8....4....2....1
9..|....1....9...54...52...31...16....8....4....2....1
10.|....1...10...88...96...60...32...16....8....4....2....1
- Erik Bates, Blan Morrison, Mason Rogers, Arianna Serafini, and Anav Sood, A new combinatorial interpretation of partial sums of m-step Fibonacci numbers, arXiv:2503.11055 [math.CO], 2025. See p. 3.
- Otto Dunkel, Solutions of a probability difference equation, Amer. Math. Monthly, 32 (1925), 354-370; see p. 356.
- Thomas Langley, Jeffrey Liese, and Jeffrey Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011), # 11.4.2.
- Eric Weisstein's World of Mathematics, Fibonacci n-Step Number.
- Wikipedia, Fibonacci number.
-
T:= function(n,k)
if k=0 and k=n then return 1;
elif k<0 or k>n then return 0;
else return 1 + Sum([1..k], j-> T(n-j,k));
fi;
end;
Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Jul 27 2019
-
T:= func< n,k | (&+[(-1)^j*2^(n-k-(k+1)*j)*Binomial(n-k-k*j, n-k-(k+1)*j): j in [0..Floor((n-k)/(k+1))]]) >;
[[T(n,k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Jul 27 2019
-
for k from 0 to 20 do for n from 0 to 20 do b(n):=sum((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j),j=0..floor(n/(k+1))):od: seq(b(n),n=0..20):od; # Richard Choulet, Jan 31 2010
A172119 := proc(n,k)
option remember;
if k = 0 then
1;
elif k > n then
0;
else
1+add(procname(n-k+i,k),i=0..k-1) ;
end if;
end proc:
seq(seq(A172119(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Sep 16 2017
-
T[, 0] = 1; T[n, n_] = 1; T[n_, k_] /; k>n = 0; T[n_, k_] := T[n, k] = Sum[T[n-k+i, k], {i, 0, k-1}] + 1;
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
Table[Sum[(-1)^j*2^(n-k-(k+1)*j)*Binomial[n-k-k*j, n-k-(k+1)*j], {j, 0, Floor[(n-k)/(k+1)]}], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 27 2019 *)
-
T(n,k) = if(k<0 || k>n, 0, k==1 && k==n, 1, 1 + sum(j=1,k, T(n-j,k)));
for(n=1,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 27 2019
-
@CachedFunction
def T(n, k):
if (k==0 and k==n): return 1
elif (k<0 or k>n): return 0
else: return 1 + sum(T(n-j, k) for j in (1..k))
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 27 2019
A209972
Number of binary words of length n avoiding the subword given by the binary expansion of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 4, 1, 1, 1, 2, 4, 5, 5, 1, 1, 1, 2, 4, 7, 8, 6, 1, 1, 1, 2, 4, 7, 12, 13, 7, 1, 1, 1, 2, 4, 7, 12, 20, 21, 8, 1, 1, 1, 2, 4, 7, 12, 21, 33, 34, 9, 1, 1, 1, 2, 4, 8, 13, 20, 37, 54, 55, 10, 1, 1, 1, 2, 4, 8, 15, 24, 33, 65, 88, 89, 11, 1, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 2, 2, 2, 2, 2, 2, ...
1, 1, 3, 3, 4, 4, 4, 4, 4, ...
1, 1, 4, 5, 7, 7, 7, 7, 8, ...
1, 1, 5, 8, 12, 12, 12, 13, 15, ...
1, 1, 6, 13, 20, 21, 20, 24, 28, ...
1, 1, 7, 21, 33, 37, 33, 44, 52, ...
1, 1, 8, 34, 54, 65, 54, 81, 96, ...
1, 1, 9, 55, 88, 114, 88, 149, 177, ...
Columns give: 0, 1:
A000012, 2:
A001477(n+1), 3:
A000045(n+2), 4, 6:
A000071(n+3), 5:
A005251(n+3), 7:
A000073(n+3), 8, 12, 14:
A008937(n+1), 9, 11, 13:
A049864(n+2), 10:
A118870, 15:
A000078(n+4), 16, 20, 24, 26, 28, 30:
A107066, 17, 19, 23, 25, 29:
A210003, 18, 22:
A209888, 21:
A152718(n+3), 27:
A210021, 31:
A001591(n+5), 32:
A001949(n+5), 33, 35, 37, 39, 41, 43, 47, 49, 53, 57, 61:
A210031.
-
A[n_, k_] := Module[{bb, cnt = 0}, Do[bb = PadLeft[IntegerDigits[j, 2], n]; If[SequencePosition[bb, IntegerDigits[k, 2], 1]=={}, cnt++], {j, 0, 2^n-1 }]; cnt];
Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 01 2021 *)
A126198
Triangle read by rows: T(n,k) (1 <= k <= n) = number of compositions of n into parts of size <= k.
Original entry on oeis.org
1, 1, 2, 1, 3, 4, 1, 5, 7, 8, 1, 8, 13, 15, 16, 1, 13, 24, 29, 31, 32, 1, 21, 44, 56, 61, 63, 64, 1, 34, 81, 108, 120, 125, 127, 128, 1, 55, 149, 208, 236, 248, 253, 255, 256, 1, 89, 274, 401, 464, 492, 504, 509, 511, 512, 1, 144, 504, 773, 912, 976, 1004, 1016, 1021, 1023, 1024
Offset: 1
Triangle begins:
1;
1, 2;
1, 3, 4;
1, 5, 7, 8;
1, 8, 13, 15, 16;
1, 13, 24, 29, 31, 32;
1, 21, 44, 56, 61, 63, 64;
Could also be extended to a square array:
1 1 1 1 1 1 1 ...
1 2 2 2 2 2 2 ...
1 3 4 4 4 4 4 ...
1 5 7 8 8 8 8 ...
1 8 13 15 16 16 16 ...
1 13 24 29 31 32 32 ...
1 21 44 56 61 63 64 ...
which when read by antidiagonals (downwards) gives A048887.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 154-155.
2nd column = Fibonacci numbers, next two columns are
A000073,
A000078; last three diagonals are 2^n, 2^n-1, 2^n-3.
-
A126198 := proc(n,k) coeftayl( x*(1-x^k)/(1-2*x+x^(k+1)),x=0,n); end: for n from 1 to 11 do for k from 1 to n do printf("%d, ",A126198(n,k)); od; od; # R. J. Mathar, Mar 09 2007
# second Maple program:
T:= proc(n, k) option remember;
if n=0 or k=1 then 1
else add(T(n-j, k), j=1..min(n, k))
fi
end:
seq(seq(T(n, k), k=1..n), n=1..15); # Alois P. Heinz, Oct 23 2011
-
rows = 11; t[n_, k_] := Sum[ (-1)^i*2^(n-i*(k+1))*Binomial[ n-i*k, i], {i, 0, Floor[n/(k+1)]}] - Sum[ (-1)^i*2^((-i)*(k+1)+n-1)*Binomial[ n-i*k-1, i], {i, 0, Floor[(n-1)/(k+1)]}]; Flatten[ Table[ t[n, k], {n, 1, rows}, {k, 1, n}]](* Jean-François Alcover, Nov 17 2011, after Max Alekseyev *)
Original entry on oeis.org
1, 2, 4, 8, 16, 32, 64, 127, 252, 500, 992, 1968, 3904, 7744, 15361, 30470, 60440, 119888, 237808, 471712, 935680, 1855999, 3681528, 7302616, 14485344, 28732880, 56994048, 113052416, 224248833, 444816138, 882329660
Offset: 0
a(3) = binomial(3,3)*2^3 = 8.
a(7) = binomial(7,7)*2^7 - binomial(1,0)*2^0 = 127.
- O. Dunkel, Solutions of a probability difference equation, Amer. Math. Monthly, 32 (1925), 354-370; see p. 356 with r = 6.
- Index entries for linear recurrences with constant coefficients, signature (2,0,0,0,0,0,-1)
-
for k from 0 to 20 do for n from 0 to 30 do b(n):=sum((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j),j=0..floor(n/(k+1))):od:k: seq(b(n),n=0..30):od; k:=6:taylor(1/(1-2*z+z^(k+1)),z=0,30);
Original entry on oeis.org
1, 2, 4, 8, 16, 32, 64, 128, 255, 508, 1012, 2016, 4016, 8000, 15936, 31744, 63233, 125958, 250904, 499792, 995568, 1983136, 3950336, 7868928, 15674623, 31223288, 62195672, 123891552, 246787536, 491591936, 979233536
Offset: 0
a(4) = binomial(4,4)*2^4 = 16.
a(9) = binomial(9,9)*2^9 - binomial(2,1)*2^1 = 512 - 4 = 508.
-
k:=7:taylor(1/(1-2*z+z^(k+1)),z=0,30); for k from 0 to 20 do for n from 0 to 30 do b(n):=sum((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j),j=0..floor(n/(k+1))):od:k: seq(b(n),n=0..30):od;
Original entry on oeis.org
1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1020, 2036, 4064, 8112, 16192, 32320, 64512, 128768, 257025, 513030, 1024024, 2043984, 4079856, 8143520, 16254720, 32444928, 64761088, 129265151, 258017272, 515010520, 1027977056
Offset: 0
a(7)=C(7,7)*2^7=128. a(10)=C(10,10)*2^10-C(2,1)*2^1=1020.
-
for k from 0 to 20 do for n from 0 to 30 do b(n):=sum((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j),j=0..floor(n/(k+1))):od:k: seq(b(n),n=0..30):od; k:=8:taylor(1/(1-2*z+z^(k+1)),z=0,30);
Original entry on oeis.org
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2044, 4084, 8160, 16304, 32576, 65088, 130048, 259840, 519168, 1037313, 2072582, 4141080, 8274000, 16531696, 33030816, 65996544, 131863040, 263466240, 526413312, 1051789311
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (2,0,0,0,0,0,0,0,0,-1).
-
for k from 0 to 20 do for n from 0 to 30 do b(n):=sum((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j),j=0..floor(n/(k+1))):od:k: seq(b(n),n=0..30):od;
-
LinearRecurrence[{2,0,0,0,0,0,0,0,0,-1},{1,2,4,8,16,32,64,128,256,512},40] (* Harvey P. Dale, Sep 22 2020 *)
A018923
Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(16,32).
Original entry on oeis.org
16, 32, 63, 124, 244, 480, 944, 1856, 3649, 7174, 14104, 27728, 54512, 107168, 210687, 414200, 814296, 1600864, 3147216, 6187264, 12163841, 23913482, 47012668, 92424472, 181701728, 357216192, 702268543, 1380623604, 2714234540, 5336044608, 10490387488
Offset: 0
Is this the same sequence as
A001949?
-
T[a_, b_, n_] := Block[{s = {a, b}, k}, Do[k = 2 Last@ s; While[k/s[[i - 1]] >= s[[i - 1]]/s[[i - 2]], k--]; AppendTo[s, k], {i, 3, n}]; s]; T[16, 32, 23] (* or *)
a = {16, 32}; Do[AppendTo[a, Ceiling[a[[n - 1]]^2/a[[n - 2]]] - 1], {n, 3, 23}]; a (* Michael De Vlieger, Feb 15 2016 *)
RecurrenceTable[{a[1] == 16, a[2] == 32, a[n] == Ceiling[a[n-1]^2/a[n-2] - 1]}, a, {n, 40}] (* Vincenzo Librandi, Feb 17 2016 *)
-
T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=ceil(a[n-1]^2/a[n-2])-1); a
T(16, 32, 30) \\ Colin Barker, Feb 16 2016
Showing 1-10 of 11 results.
Comments