cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A172119 Sum the k preceding elements in the same column and add 1 every time.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 4, 2, 1, 1, 5, 7, 4, 2, 1, 1, 6, 12, 8, 4, 2, 1, 1, 7, 20, 15, 8, 4, 2, 1, 1, 8, 33, 28, 16, 8, 4, 2, 1, 1, 9, 54, 52, 31, 16, 8, 4, 2, 1, 1, 10, 88, 96, 60, 32, 16, 8, 4, 2, 1, 1, 11, 143, 177, 116, 63, 32, 16, 8, 4, 2, 1, 1, 12, 232, 326, 224, 124, 64, 32, 16
Offset: 0

Views

Author

Mats Granvik, Jan 26 2010

Keywords

Comments

Columns are related to Fibonacci n-step numbers. Are there closed forms for the sequences in the columns?
We denote by a(n,k) the number which is in the (n+1)-th row and (k+1)-th-column. With help of the definition, we also have the recurrence relation: a(n+k+1, k) = 2*a(n+k, k) - a(n, k). We see on the main diagonal the numbers 1,2,4, 8, ..., which is clear from the formula for the general term d(n)=2^n. - Richard Choulet, Jan 31 2010
Most of the paper by Dunkel (1925) is a study of the columns of this table. - Petros Hadjicostas, Jun 14 2019

Examples

			Triangle begins:
n\k|....0....1....2....3....4....5....6....7....8....9...10
---|-------------------------------------------------------
0..|....1
1..|....1....1
2..|....1....2....1
3..|....1....3....2....1
4..|....1....4....4....2....1
5..|....1....5....7....4....2....1
6..|....1....6...12....8....4....2....1
7..|....1....7...20...15....8....4....2....1
8..|....1....8...33...28...16....8....4....2....1
9..|....1....9...54...52...31...16....8....4....2....1
10.|....1...10...88...96...60...32...16....8....4....2....1
		

Crossrefs

Cf. A000071 (col. 3), A008937 (col. 4), A107066 (col. 5), A001949 (col. 6), A172316 (col. 7), A172317 (col. 8), A172318 (col. 9), A172319 (col. 10), A172320 (col. 11), A144428.
Cf. (1-((-1)^T(n, k)))/2 = A051731, see formula by Hieronymus Fischer in A022003.

Programs

  • GAP
    T:= function(n,k)
        if k=0 and k=n then return 1;
        elif k<0 or k>n then return 0;
        else return 1 + Sum([1..k], j-> T(n-j,k));
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Jul 27 2019
  • Magma
    T:= func< n,k | (&+[(-1)^j*2^(n-k-(k+1)*j)*Binomial(n-k-k*j, n-k-(k+1)*j): j in [0..Floor((n-k)/(k+1))]]) >;
    [[T(n,k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Jul 27 2019
    
  • Maple
    for k from 0 to 20 do for n from 0 to 20 do b(n):=sum((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j),j=0..floor(n/(k+1))):od: seq(b(n),n=0..20):od; # Richard Choulet, Jan 31 2010
    A172119 := proc(n,k)
        option remember;
        if k = 0 then
            1;
        elif k > n then
            0;
        else
            1+add(procname(n-k+i,k),i=0..k-1) ;
        end if;
    end proc:
    seq(seq(A172119(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Sep 16 2017
  • Mathematica
    T[, 0] = 1; T[n, n_] = 1; T[n_, k_] /; k>n = 0; T[n_, k_] := T[n, k] = Sum[T[n-k+i, k], {i, 0, k-1}] + 1;
    Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
    Table[Sum[(-1)^j*2^(n-k-(k+1)*j)*Binomial[n-k-k*j, n-k-(k+1)*j], {j, 0, Floor[(n-k)/(k+1)]}], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 27 2019 *)
  • PARI
    T(n,k) = if(k<0 || k>n, 0, k==1 && k==n, 1, 1 + sum(j=1,k, T(n-j,k)));
    for(n=1,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 27 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 and k==n): return 1
        elif (k<0 or k>n): return 0
        else: return 1 + sum(T(n-j, k) for j in (1..k))
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 27 2019
    

Formula

T(n,0) = 1.
T(n,1) = n.
T(n,2) = A000071(n+1).
T(n,3) = A008937(n-2).
The general term in the n-th row and k-th column is given by: a(n, k) = Sum_{j=0..floor(n/(k+1))} ((-1)^j binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j)). For example: a(5,3) = binomial(5,5)*2^5 - binomial(2,1)*2^1 = 28. The generating function of the (k+1)-th column satisfies: psi(k)(z)=1/(1-2*z+z^(k+1)) (for k=0 we have the known result psi(0)(z)=1/(1-z)). - Richard Choulet, Jan 31 2010 [By saying "(k+1)-th column" the author actually means "k-th column" for k = 0, 1, 2, ... - Petros Hadjicostas, Jul 26 2019]

A172318 9th column of the array A172119.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1020, 2036, 4064, 8112, 16192, 32320, 64512, 128768, 257025, 513030, 1024024, 2043984, 4079856, 8143520, 16254720, 32444928, 64761088, 129265151, 258017272, 515010520, 1027977056
Offset: 0

Views

Author

Richard Choulet, Jan 31 2010

Keywords

Examples

			a(7)=C(7,7)*2^7=128. a(10)=C(10,10)*2^10-C(2,1)*2^1=1020.
		

Crossrefs

Partial sums of A079262.

Programs

  • Maple
    for k from 0 to 20 do for n from 0 to 30 do b(n):=sum((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j),j=0..floor(n/(k+1))):od:k: seq(b(n),n=0..30):od; k:=8:taylor(1/(1-2*z+z^(k+1)),z=0,30);

Formula

G.f.: 1/(1-2*z+z^9).
a(n) = sum((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j),j=0..floor(n/(k+1))) with k=8.
Recurrence relation: a(n+9) = 2*a(8) - a(n).

A172319 10th column of A172119.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2044, 4084, 8160, 16304, 32576, 65088, 130048, 259840, 519168, 1037313, 2072582, 4141080, 8274000, 16531696, 33030816, 65996544, 131863040, 263466240, 526413312, 1051789311
Offset: 0

Views

Author

Richard Choulet, Jan 31 2010

Keywords

Crossrefs

Partial sums of A104144.

Programs

  • Maple
    for k from 0 to 20 do for n from 0 to 30 do b(n):=sum((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j),j=0..floor(n/(k+1))):od:k: seq(b(n),n=0..30):od;
  • Mathematica
    LinearRecurrence[{2,0,0,0,0,0,0,0,0,-1},{1,2,4,8,16,32,64,128,256,512},40] (* Harvey P. Dale, Sep 22 2020 *)

Formula

G.f.: 1/(1-2*z+z^10).
a(n)=sum((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j),j=0..floor(n/(k+1))). a(n+10)=2*a(n+9)-a(n).

A172320 11th column of A172119.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2047, 4092, 8180, 16352, 32688, 65344, 130624, 261120, 521984, 1043456, 2085888, 4169729, 8335366, 16662552, 33308752, 66584816, 133104288, 266077952, 531894784, 1063267584
Offset: 0

Views

Author

Richard Choulet, Jan 31 2010

Keywords

Examples

			a(12)=C(12,12)*2^12-C(2,1)*2^1=4092.
		

Crossrefs

Programs

  • Maple
    k:=10:taylor(1/(1-2*z+z^(k+1)),z=0,30); for k from 0 to 20 do for n from 0 to 30 do b(n):=sum((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j),j=0..floor(n/(k+1))):od:k: seq(b(n),n=0..30):od;

Formula

a(n)=sum((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j),j=0..floor(n/(k+1))) with k=10.
G.f: f(z)=1/(1-2*z+z^(11)).
a(n+11)=2*a(n+10)-a(n).

A234589 Expansion of g.f.: (1+x^6+x^7)/(1-2*x+x^6-x^7-x^8).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 255, 508, 1012, 2016, 4016, 8000, 15937, 31749, 63249, 126002, 251016, 500064, 996207, 1984602, 3953641, 7876278, 15690791, 31258536, 62271945, 124055559, 247138286, 492338537, 980816202, 1953940937, 3892559256, 7754593434, 15448376086, 30775607480, 61309875581, 122138964964
Offset: 0

Views

Author

N. J. A. Sloane, Jan 01 2014

Keywords

Comments

a(n) is the number of binary words of length n which have no 00010100-matches.

Crossrefs

Similar to but different from A172317.

Programs

  • GAP
    a:=[1,2,4,8,16,32,64,128];; for n in [9..40] do a[n]:=2*a[n-1]-a[n-6]+a[n-7]+a[n-8]; od; a; # G. C. Greubel, Sep 13 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x^6+x^7)/(1-2*x+x^6-x^7-x^8) )); // G. C. Greubel, Sep 13 2019
    
  • Maple
    seq(coeff(series((1+x^6+x^7)/(1-2*x+x^6-x^7-x^8), x, n+1), x, n), n = 0..40); # G. C. Greubel, Sep 13 2019
  • Mathematica
    CoefficientList[Series[(1+x^6+x^7)/(1-2*x+x^6-x^7-x^8), {x,0,40}], x] (* G. C. Greubel, Sep 13 2019 *)
    LinearRecurrence[{2,0,0,0,0,-1,1,1},{1,2,4,8,16,32,64,128},40] (* Harvey P. Dale, Aug 31 2023 *)
  • PARI
    my(x='x+O('x^40)); Vec((1+x^6+x^7)/(1-2*x+x^6-x^7-x^8)) \\ G. C. Greubel, Sep 13 2019
    
  • Sage
    def A234589_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^6+x^7)/(1-2*x+x^6-x^7-x^8)).list()
    A234589_list(40) # G. C. Greubel, Sep 13 2019
    
Showing 1-5 of 5 results.