cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A172119 Sum the k preceding elements in the same column and add 1 every time.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 4, 2, 1, 1, 5, 7, 4, 2, 1, 1, 6, 12, 8, 4, 2, 1, 1, 7, 20, 15, 8, 4, 2, 1, 1, 8, 33, 28, 16, 8, 4, 2, 1, 1, 9, 54, 52, 31, 16, 8, 4, 2, 1, 1, 10, 88, 96, 60, 32, 16, 8, 4, 2, 1, 1, 11, 143, 177, 116, 63, 32, 16, 8, 4, 2, 1, 1, 12, 232, 326, 224, 124, 64, 32, 16
Offset: 0

Views

Author

Mats Granvik, Jan 26 2010

Keywords

Comments

Columns are related to Fibonacci n-step numbers. Are there closed forms for the sequences in the columns?
We denote by a(n,k) the number which is in the (n+1)-th row and (k+1)-th-column. With help of the definition, we also have the recurrence relation: a(n+k+1, k) = 2*a(n+k, k) - a(n, k). We see on the main diagonal the numbers 1,2,4, 8, ..., which is clear from the formula for the general term d(n)=2^n. - Richard Choulet, Jan 31 2010
Most of the paper by Dunkel (1925) is a study of the columns of this table. - Petros Hadjicostas, Jun 14 2019

Examples

			Triangle begins:
n\k|....0....1....2....3....4....5....6....7....8....9...10
---|-------------------------------------------------------
0..|....1
1..|....1....1
2..|....1....2....1
3..|....1....3....2....1
4..|....1....4....4....2....1
5..|....1....5....7....4....2....1
6..|....1....6...12....8....4....2....1
7..|....1....7...20...15....8....4....2....1
8..|....1....8...33...28...16....8....4....2....1
9..|....1....9...54...52...31...16....8....4....2....1
10.|....1...10...88...96...60...32...16....8....4....2....1
		

Crossrefs

Cf. A000071 (col. 3), A008937 (col. 4), A107066 (col. 5), A001949 (col. 6), A172316 (col. 7), A172317 (col. 8), A172318 (col. 9), A172319 (col. 10), A172320 (col. 11), A144428.
Cf. (1-((-1)^T(n, k)))/2 = A051731, see formula by Hieronymus Fischer in A022003.

Programs

  • GAP
    T:= function(n,k)
        if k=0 and k=n then return 1;
        elif k<0 or k>n then return 0;
        else return 1 + Sum([1..k], j-> T(n-j,k));
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Jul 27 2019
  • Magma
    T:= func< n,k | (&+[(-1)^j*2^(n-k-(k+1)*j)*Binomial(n-k-k*j, n-k-(k+1)*j): j in [0..Floor((n-k)/(k+1))]]) >;
    [[T(n,k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Jul 27 2019
    
  • Maple
    for k from 0 to 20 do for n from 0 to 20 do b(n):=sum((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j),j=0..floor(n/(k+1))):od: seq(b(n),n=0..20):od; # Richard Choulet, Jan 31 2010
    A172119 := proc(n,k)
        option remember;
        if k = 0 then
            1;
        elif k > n then
            0;
        else
            1+add(procname(n-k+i,k),i=0..k-1) ;
        end if;
    end proc:
    seq(seq(A172119(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Sep 16 2017
  • Mathematica
    T[, 0] = 1; T[n, n_] = 1; T[n_, k_] /; k>n = 0; T[n_, k_] := T[n, k] = Sum[T[n-k+i, k], {i, 0, k-1}] + 1;
    Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
    Table[Sum[(-1)^j*2^(n-k-(k+1)*j)*Binomial[n-k-k*j, n-k-(k+1)*j], {j, 0, Floor[(n-k)/(k+1)]}], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 27 2019 *)
  • PARI
    T(n,k) = if(k<0 || k>n, 0, k==1 && k==n, 1, 1 + sum(j=1,k, T(n-j,k)));
    for(n=1,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 27 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 and k==n): return 1
        elif (k<0 or k>n): return 0
        else: return 1 + sum(T(n-j, k) for j in (1..k))
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 27 2019
    

Formula

T(n,0) = 1.
T(n,1) = n.
T(n,2) = A000071(n+1).
T(n,3) = A008937(n-2).
The general term in the n-th row and k-th column is given by: a(n, k) = Sum_{j=0..floor(n/(k+1))} ((-1)^j binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j)). For example: a(5,3) = binomial(5,5)*2^5 - binomial(2,1)*2^1 = 28. The generating function of the (k+1)-th column satisfies: psi(k)(z)=1/(1-2*z+z^(k+1)) (for k=0 we have the known result psi(0)(z)=1/(1-z)). - Richard Choulet, Jan 31 2010 [By saying "(k+1)-th column" the author actually means "k-th column" for k = 0, 1, 2, ... - Petros Hadjicostas, Jul 26 2019]

A251742 8-step Fibonacci sequence starting with 0,0,0,1,0,0,0,0.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 1, 2, 4, 8, 15, 30, 60, 120, 240, 479, 956, 1908, 3808, 7601, 15172, 30284, 60448, 120656, 240833, 480710, 959512, 1915216, 3822831, 7630490, 15230696, 30400944, 60681232, 121121631, 241762552, 482565592, 963215968, 1922609105
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 8-step Fibonacci sequences are A079262, A105754, A251672, A251740, A251741, A251744, A251745.

Programs

  • Mathematica
    LinearRecurrence[Table[1, {8}], {0, 0, 0, 1, 0, 0, 0, 0}, 43] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+8) = a(n)+a(n+1)+a(n+2)+a(n+3)+a(n+4)+a(n+5)+a(n+6)+a(n+7).
G.f.: x^3*(-1+x+x^2+x^3+x^4)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8) . - R. J. Mathar, Mar 28 2025
a(n) = A172318(n-3)-2*A172318(n-4)+A172318(n-8) . - R. J. Mathar, Mar 28 2025

A172319 10th column of A172119.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2044, 4084, 8160, 16304, 32576, 65088, 130048, 259840, 519168, 1037313, 2072582, 4141080, 8274000, 16531696, 33030816, 65996544, 131863040, 263466240, 526413312, 1051789311
Offset: 0

Views

Author

Richard Choulet, Jan 31 2010

Keywords

Crossrefs

Partial sums of A104144.

Programs

  • Maple
    for k from 0 to 20 do for n from 0 to 30 do b(n):=sum((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j),j=0..floor(n/(k+1))):od:k: seq(b(n),n=0..30):od;
  • Mathematica
    LinearRecurrence[{2,0,0,0,0,0,0,0,0,-1},{1,2,4,8,16,32,64,128,256,512},40] (* Harvey P. Dale, Sep 22 2020 *)

Formula

G.f.: 1/(1-2*z+z^10).
a(n)=sum((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j),j=0..floor(n/(k+1))). a(n+10)=2*a(n+9)-a(n).

A172320 11th column of A172119.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2047, 4092, 8180, 16352, 32688, 65344, 130624, 261120, 521984, 1043456, 2085888, 4169729, 8335366, 16662552, 33308752, 66584816, 133104288, 266077952, 531894784, 1063267584
Offset: 0

Views

Author

Richard Choulet, Jan 31 2010

Keywords

Examples

			a(12)=C(12,12)*2^12-C(2,1)*2^1=4092.
		

Crossrefs

Programs

  • Maple
    k:=10:taylor(1/(1-2*z+z^(k+1)),z=0,30); for k from 0 to 20 do for n from 0 to 30 do b(n):=sum((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j),j=0..floor(n/(k+1))):od:k: seq(b(n),n=0..30):od;

Formula

a(n)=sum((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j),j=0..floor(n/(k+1))) with k=10.
G.f: f(z)=1/(1-2*z+z^(11)).
a(n+11)=2*a(n+10)-a(n).
Showing 1-4 of 4 results.