cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055235 Sums of two powers of 3.

Original entry on oeis.org

2, 4, 6, 10, 12, 18, 28, 30, 36, 54, 82, 84, 90, 108, 162, 244, 246, 252, 270, 324, 486, 730, 732, 738, 756, 810, 972, 1458, 2188, 2190, 2196, 2214, 2268, 2430, 2916, 4374, 6562, 6564, 6570, 6588, 6642, 6804, 7290, 8748, 13122, 19684, 19686, 19692, 19710
Offset: 0

Views

Author

Henry Bottomley, Jun 22 2000

Keywords

Crossrefs

Partial sums of A135293.

Programs

  • Mathematica
    mx = 10; Sort[Flatten[Table[3^x + 3^y, {y, 0, mx}, {x, 0, y}]]] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *)
    f[n_] := Block[{t = Floor[(Sqrt[1 + 8 (n - 1)] - 1)/2]}, 3^(n - 1 - t*(t + 1)/2) + 3^t]; Array[f, 49] (* Robert G. Wilson v, Oct 08 2011 *)
    Total/@Tuples[3^Range[0,10],2]//Union (* Harvey P. Dale, Aug 28 2025 *)
  • PARI
    for( n=0,5, for(k=0,n, print1(3^n+3^k",")))
    
  • PARI
    A055235(n)={ my( t=(sqrtint(8*n-7)-1)\2); 3^t+3^(n-1-t*(t+1)/2) }  \\ M. F. Hasler, Oct 08 2011
    
  • Python
    from math import isqrt
    def A055235(n): return 3**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+3**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 08 2025

Formula

a(n+1) = 3^(n-trinv(n)*(trinv(n)+1)/2)+3^trinv(n), where trinv(n) = floor((sqrt(1+8*n)-1)/2) = A003056(n) and n-trinv(n)*(trinv(n)+1)/2 = A002262(n). [corrected by M. F. Hasler, Oct 08 2011]
Regarded as a triangle, T(n, k) = 3^n + 3^k, because 3^n + 3^n < 3^(n+1) + 3^0 for all n > 0.