A055245 Numerator sequence of mean length of certain stackings of n+1 squares on a double staircase.
1, 1, 5, 12, 28, 61, 127, 257, 507, 982, 1872, 3523, 6557, 12089, 22105, 40128, 72380, 129809, 231611, 411337, 727455, 1281578, 2249856, 3936935, 6868537, 11950033, 20737613, 35901300, 62014396, 106897669, 183905143, 315806321, 541372131
Offset: 0
References
- L. Turban, Lattice animals on a staircase and Fibonacci numbers, J.Phys. A 33 (2000) 2587-2595.
Links
- Index entries for linear recurrences with constant coefficients, signature (3, 0, -5, 0, 3, 1).
Programs
-
Maple
a:= n-> (Matrix([[1,-1,0,2,-9,25]]). Matrix(6, (i,j)-> if (i=j-1) then 1 elif j=1 then [3,0,-5,0,3,1][i] else 0 fi)^(n))[1,1]: seq(a(n), n=0..32); # Alois P. Heinz, Aug 05 2008
-
Mathematica
CoefficientList[Series[(1-2x+2x^2+2x^3-3x^4-x^5)/(1-x-x^2)^3,{x,0,50}],x] (* or *) LinearRecurrence[{3,0,-5,0,3,1},{1,1,5,12,28,61},50] (* Harvey P. Dale, Aug 24 2014 *)
Formula
G.f.: (1-2*x+2*x^2+2*x^3-3*x^4-x^5)/(1-x-x^2)^3. (from Turban reference eq.(3.11)).
a(n) = ((5*n^2+3*n-27)*F(n)+(19*n+25)*F(n+1))/25 with F(n)=A000045(n) (Fibonacci numbers) (from Turban reference eq.(3.12)).
a(0)=1, a(1)=1, a(2)=5, a(3)=12, a(4)=28, a(5)=61, a(n)=3*a(n-1)- 5*a(n-3)+ 3*a(n-5)+a(n-6). - Harvey P. Dale, Aug 24 2014
Comments