cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055245 Numerator sequence of mean length of certain stackings of n+1 squares on a double staircase.

Original entry on oeis.org

1, 1, 5, 12, 28, 61, 127, 257, 507, 982, 1872, 3523, 6557, 12089, 22105, 40128, 72380, 129809, 231611, 411337, 727455, 1281578, 2249856, 3936935, 6868537, 11950033, 20737613, 35901300, 62014396, 106897669, 183905143, 315806321, 541372131
Offset: 0

Views

Author

Wolfdieter Lang, May 10 2000

Keywords

Comments

Denominator sequence is A055244(n).

References

  • L. Turban, Lattice animals on a staircase and Fibonacci numbers, J.Phys. A 33 (2000) 2587-2595.

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix([[1,-1,0,2,-9,25]]). Matrix(6, (i,j)-> if (i=j-1) then 1 elif j=1 then [3,0,-5,0,3,1][i] else 0 fi)^(n))[1,1]: seq(a(n), n=0..32); # Alois P. Heinz, Aug 05 2008
  • Mathematica
    CoefficientList[Series[(1-2x+2x^2+2x^3-3x^4-x^5)/(1-x-x^2)^3,{x,0,50}],x] (* or *) LinearRecurrence[{3,0,-5,0,3,1},{1,1,5,12,28,61},50] (* Harvey P. Dale, Aug 24 2014 *)

Formula

G.f.: (1-2*x+2*x^2+2*x^3-3*x^4-x^5)/(1-x-x^2)^3. (from Turban reference eq.(3.11)).
a(n) = ((5*n^2+3*n-27)*F(n)+(19*n+25)*F(n+1))/25 with F(n)=A000045(n) (Fibonacci numbers) (from Turban reference eq.(3.12)).
a(0)=1, a(1)=1, a(2)=5, a(3)=12, a(4)=28, a(5)=61, a(n)=3*a(n-1)- 5*a(n-3)+ 3*a(n-5)+a(n-6). - Harvey P. Dale, Aug 24 2014