cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055260 Sums of two powers of 9.

Original entry on oeis.org

2, 10, 18, 82, 90, 162, 730, 738, 810, 1458, 6562, 6570, 6642, 7290, 13122, 59050, 59058, 59130, 59778, 65610, 118098, 531442, 531450, 531522, 532170, 538002, 590490, 1062882, 4782970, 4782978, 4783050, 4783698, 4789530, 4842018, 5314410, 9565938, 43046722
Offset: 0

Views

Author

Henry Bottomley, Jun 22 2000

Keywords

Crossrefs

Programs

  • Mathematica
    t = 9^Range[0, 9]; Select[Union[Flatten[Table[i + j, {i, t}, {j, t}]]], # <= t[[-1]] + 1 &] (* T. D. Noe, Oct 09 2011 *)
    Total/@Tuples[9^Range[0,10],2]//Union (* Harvey P. Dale, Jul 03 2019 *)
  • Python
    def valuation(n, b):
      v = 0
      while n > 1: n //= b; v += 1
      return v
    def aupto(lim):
      pows = [9**i for i in range(valuation(lim-1, 9) + 1)]
      sum_pows = sorted([a+b for i, a in enumerate(pows) for b in pows[i:]])
      return [s for s in sum_pows if s <= lim]
    print(aupto(43046722)) # Michael S. Branicky, Feb 10 2021
    
  • Python
    from math import isqrt
    def A055260(n): return 9**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+9**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 09 2025

Formula

a(n) = 9^(n-trinv(n))+9^trinv(n), where trinv(n) = floor((1+sqrt(1+8*n))/2) = A002262(n) and n-trinv(n) = A003056(n)
Regarded as a triangle T(n, k) = 9^n + 9^k, so as a sequence a(n) = 9^A002262(n) + 9^A003056(n).