A055264 Possible values of A055263; numbers equal to 0, 1, 3 or 6 modulo 9.
0, 1, 3, 6, 9, 10, 12, 15, 18, 19, 21, 24, 27, 28, 30, 33, 36, 37, 39, 42, 45, 46, 48, 51, 54, 55, 57, 60, 63, 64, 66, 69, 72, 73, 75, 78, 81, 82, 84, 87, 90, 91, 93, 96, 99, 100, 102, 105, 108, 109, 111, 114, 117, 118, 120, 123, 126, 127, 129, 132, 135, 136, 138, 141
Offset: 0
References
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 190.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Crossrefs
Cf. A055263.
Programs
-
Mathematica
Select[Range[0,200],MemberQ[{0,1,3,6},Mod[#,9]]&] (* Harvey P. Dale, Apr 10 2014 *) #+{0,1,3,6}&/@(9*Range[0,20])//Flatten (* Harvey P. Dale, Jun 03 2019 *)
-
Python
def A055264(n): return (0,1,3,6)[n&3]+9*(n>>2) # Chai Wah Wu, Jan 30 2023
Formula
a(n) = a(n-4) + 9 = 9*floor(n/4) + (n mod 4)*(1 + (n mod 4))/2.
G.f.: x*(1+2*x+3*x^2+3*x^3)/((1-x)^2*(1+x)*(1+x^2)). - R. J. Mathar, Sep 30 2008
E.g.f.: (3*cos(x) + (9*x - 3)*cosh(x) - sin(x) + (9*x - 4)*sinh(x))/4. - Stefano Spezia, Aug 07 2024
Comments