cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055322 Number of labeled trees with n nodes and 10 leaves.

Original entry on oeis.org

11, 67452, 48907716, 14690700024, 2705763420360, 365758901988480, 40063975278687360, 3778762636904935680, 319426407028867057920, 24881574582258352358400, 1822046744492620226380800
Offset: 11

Views

Author

Christian G. Bower, May 11 2000

Keywords

Crossrefs

Column 10 of A055314.

Programs

  • Magma
    [Factorial(n)*(n-10)*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(135*n^7 - 8190*n^6 + 211050*n^5 - 2991660*n^4 + 25164055*n^3 - 125425110*n^2 + 342426104*n - 394205184) / 5056584744960000: n in [11..25]]; // Vincenzo Librandi, Jul 25 2014
  • Mathematica
    Table[n! * (n-10)*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(135*n^7 - 8190*n^6 + 211050*n^5 - 2991660*n^4 + 25164055*n^3 - 125425110*n^2 + 342426104*n - 394205184) / 5056584744960000,{n,11,25}] (* Vaclav Kotesovec, Jul 25 2014 *)

Formula

a(n) = (n!/10!)*Stirling2(n-2, n-10). - Vladeta Jovovic, Jan 28 2004
a(n) = n! * (n-10)*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(135*n^7 - 8190*n^6 + 211050*n^5 - 2991660*n^4 + 25164055*n^3 - 125425110*n^2 + 342426104*n - 394205184) / 5056584744960000. - Vaclav Kotesovec, Jul 25 2014