cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055328 Number of rooted identity trees with n nodes and 3 leaves.

Original entry on oeis.org

1, 5, 13, 28, 53, 91, 146, 223, 326, 461, 634, 851, 1119, 1446, 1839, 2307, 2859, 3504, 4252, 5114, 6100, 7222, 8492, 9922, 11525, 13315, 15305, 17510, 19945, 22625, 25566, 28785, 32298, 36123, 40278, 44781, 49651, 54908, 60571, 66661
Offset: 6

Views

Author

Christian G. Bower, May 12 2000

Keywords

Examples

			Illustration for a(7)=5 from _N. J. A. Sloane_, Mar 21 2016:
The five 7-node rooted identity trees with 3 leaves are:
(O denotes the root)
o
|
o o o
|/ /
o o
|/
O
..........
o
|
o   o
|  /
o o o
|//
O
..........
o
|
o
|
o o
|/
o o
|/
O
..............
o
|
o o
|/
o
|
o o
|/
O
..............
o
|
o o
|/
o o
|/
o
|
O
..............
		

Crossrefs

Column 3 of A055327.

Programs

  • Magma
    [(9*(1-(-1)^n) -272*n +216*n^2 -64*n^3 +6*n^4 +96*Floor((n+2)/3))/288: n in [6..46]]; // G. C. Greubel, Nov 09 2023
    
  • Mathematica
    LinearRecurrence[{3,-2,-1,0,1,2,-3,1}, {1,5,13,28,53,91,146,223}, 40] (* Jean-François Alcover, Sep 06 2019 *)
  • PARI
    Vec((2*x+1)/((1-x^2)*(1-x^3)*(1-x)^3) + O(x^40)) \\ Andrew Howroyd, Aug 28 2018
    
  • SageMath
    [(9*(n%2) -136*n +108*n^2 -32*n^3 +3*n^4 +48*((n+2)//3))/144 for n in range(6,47)] # G. C. Greubel, Nov 09 2023

Formula

G.f.: x^6*(1+2*x)/((1-x^2)*(1-x^3)*(1-x)^3).
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-5) + 2*a(n-6) - 3*a(n-7) + a(n-8) for n>13. - Colin Barker, Sep 06 2019
a(n) = (1/288)*(41 - 240*n + 216*n^2 - 64*n^3 + 6*n^4 - 9*(-1)^n - 32*ChebyshevU(n, -1/2)). - G. C. Greubel, Nov 09 2023