A055375 Euler transform of Pascal's triangle A007318.
1, 1, 1, 2, 3, 2, 3, 7, 7, 3, 5, 14, 21, 14, 5, 7, 26, 48, 48, 26, 7, 11, 45, 103, 131, 103, 45, 11, 15, 75, 198, 312, 312, 198, 75, 15, 22, 120, 366, 674, 830, 674, 366, 120, 22, 30, 187, 637, 1359, 1961, 1961, 1359, 637, 187, 30, 42, 284, 1078, 2584, 4302, 5066, 4302, 2584, 1078, 284, 42
Offset: 0
Examples
Triangle begins 1; 1, 1; 2, 3, 2; 3, 7, 7, 3; 5, 14, 21, 14, 5; 7, 26, 48, 48, 26, 7; 11, 45, 103, 131, 103, 45, 11; 15, 75, 198, 312, 312, 198, 75, 15; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
- N. J. A. Sloane, Transforms
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
Programs
-
Maple
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add( g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i)+k-1, k), k=0..j)))) end: b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i)))) end: T:= (n, k)-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)): seq(T(n), n=0..15); # Alois P. Heinz, Feb 14 2023
-
Mathematica
nmax = 10; pp = Product[Product[1/(1 - x^i*y^j)^Binomial[i, j], {j, 0, i}], {i, 1, nmax}]; t[n_, k_] := SeriesCoefficient[pp, {x, 0, n}, {y, 0, k}]; Table[t[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 18 2017 *)
Formula
G.f.: Product_{i>=1} Product_{j=0..i} 1/(1 - x^i y^j)^C(i,j). - Franklin T. Adams-Watters, Jan 10 2007
Sum_{k=0..2n} (-1)^k * T(2n,k) = A034691(n). - Alois P. Heinz, Dec 05 2023
Comments