cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055375 Euler transform of Pascal's triangle A007318.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 3, 7, 7, 3, 5, 14, 21, 14, 5, 7, 26, 48, 48, 26, 7, 11, 45, 103, 131, 103, 45, 11, 15, 75, 198, 312, 312, 198, 75, 15, 22, 120, 366, 674, 830, 674, 366, 120, 22, 30, 187, 637, 1359, 1961, 1961, 1359, 637, 187, 30, 42, 284, 1078, 2584, 4302, 5066, 4302, 2584, 1078, 284, 42
Offset: 0

Views

Author

Christian G. Bower, May 16 2000

Keywords

Comments

Number of partitions of n objects, k of which are black, into parts each of which is a sequence of objects. E.g. T(3,1) = 7; the partitions are [BWW], [WBW], [WWB], [BW,W], [WB,W], [WW,B] and [B,W,W]. - Franklin T. Adams-Watters, Jan 10 2007

Examples

			Triangle begins
   1;
   1,  1;
   2,  3,   2;
   3,  7,   7,   3;
   5, 14,  21,  14,   5;
   7, 26,  48,  48,  26,   7;
  11, 45, 103, 131, 103,  45, 11;
  15, 75, 198, 312, 312, 198, 75, 15;
  ...
		

Crossrefs

Row sums give A034899.
Columns k=0-1 give: A000041, A014153(n-1) for n>=1.
T(2n,n) gives A360626.

Programs

  • Maple
    g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
          g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i)+k-1, k), k=0..j))))
        end:
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
         `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
        end:
    T:= (n, k)-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Feb 14 2023
  • Mathematica
    nmax = 10; pp = Product[Product[1/(1 - x^i*y^j)^Binomial[i, j], {j, 0, i}], {i, 1, nmax}]; t[n_, k_] := SeriesCoefficient[pp, {x, 0, n}, {y, 0, k}]; Table[t[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 18 2017 *)

Formula

G.f.: Product_{i>=1} Product_{j=0..i} 1/(1 - x^i y^j)^C(i,j). - Franklin T. Adams-Watters, Jan 10 2007
Sum_{k=0..2n} (-1)^k * T(2n,k) = A034691(n). - Alois P. Heinz, Dec 05 2023