A055891 CIK (necklace, indistinct, unlabeled) transform of powers of 2.
1, 2, 7, 20, 64, 200, 686, 2324, 8194, 29084, 104860, 381116, 1398148, 5161592, 19173958, 71580752, 268435474, 1010572832, 3817749138, 14467230668, 54975581488, 209430687944, 799644820114, 3059510251700, 11728124035248
Offset: 0
Keywords
Links
- C. G. Bower, Transforms (2)
- P. Flajolet and M. Soria, The Cycle Construction, SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60.
- P. Flajolet and M. Soria, The Cycle Construction. [pdf file]
Programs
-
Mathematica
{1}~Join~Table[(1/n) DivisorSum[n, EulerPhi[n/#] *2^#*(2^# - 1) &], {n, 24}] (* Michael De Vlieger, Dec 06 2017 *)
-
PARI
N = 66; x = 'x + O('x^N); f(x)=sum(n=1,N, 2^n*x^n ); gf = 1 + sum(n=1,N, eulerphi(n)/n*log(1/(1-f(x^n))) ); v = Vec(gf) /* Joerg Arndt, Jan 21 2013 */
Formula
From Petros Hadjicostas, Dec 06 2017: (Start)
a(n) = (1/n)*Sum_{d|n} phi(n/d)*2^d*(2^d-1) = (1/n)*Sum_{d|n} phi(n/d)*A020522(d) for n >= 1.
G.f.: 1 - Sum_{n>=1} (phi(n)/n)*log((1-4*x^n)/(1-2*x^n)).
(End)
Comments