A055376 CIK transform of Pascal's triangle A007318.
0, 1, 1, 2, 3, 2, 3, 7, 7, 3, 5, 15, 24, 15, 5, 7, 31, 62, 62, 31, 7, 13, 63, 161, 212, 161, 63, 13, 19, 127, 381, 635, 635, 381, 127, 19, 35, 255, 900, 1785, 2244, 1785, 900, 255, 35, 59, 511, 2044, 4774, 7154, 7154, 4774, 2044, 511, 59, 107, 1023, 4619
Offset: 0
Examples
Triangle begins: 0; 1, 1; 2, 3, 2; 3, 7, 7, 3; 5, 15, 24, 15, 5; 7, 31, 62, 62, 31, 7; 13, 63, 161, 212, 161, 63, 13; 19, 127, 381, 635, 635, 381, 127, 19; ...
Links
Crossrefs
Row sums give A055891.
Formula
From Petros Hadjicostas, Dec 06 2017: (Start)
Let b(n,k) be the number in row n and column k. We have b(0,0) = 0 and b(n,k) = (1/n)*Sum_{d|gcd(n,k)} phi(d)*C(n/d, k/d)*(2^{n/d}-1) for n>=1 and k>=0. Here, C(n,k) = binomial(n,k).
G.f. for b(n,k): Sum_{n>=1, k>=0} b(n,k)*x^n*y^k = -Sum_{s>=1} (phi(s)/s)*log((1-2*x^s*(1+y^s))/(1-x^s*(1+y^s)).
G.f. for row n>=1: Sum_{k>=0} b(n,k)*y^k = (1/n)*Sum_{d|n} phi(d)*(2^{n/d}-1)*(1+y^d)^{n/d}.
G.f. for column k = 0: Sum_{n>=1} b(n,k=0)*x^n = Sum_{s>=1} (phi(s)/s)*log((1-x^s)/(1-2*x^s)) = -x/(1-x) - Sum_{s>=1} (phi(s)/s)*log(1-2*x^s).
G.f. for column k >= 1: Sum_{n>=1} b(n,k)*x^n = Sum_{d|k} (phi(d)/d)*(g_{k/d}(2*x^d) - g_{k/d}(x^d)), where g_k(x) = Sum_{s=0..k-1} C(k-1, s)*(-1)^s/((k-s)*(1-x)^{k-s}).
(End)
Comments