cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055395 Number of bracketings of 0#0#0#...#0 giving result 0, where 0#0 = 0#1 = 1#0 = 1, 1#1 = 0.

Original entry on oeis.org

1, 0, 0, 1, 4, 12, 36, 116, 392, 1350, 4696, 16500, 58572, 209824, 757440, 2752185, 10057636, 36943044, 136319052, 505086728, 1878395920, 7009239644, 26235435248, 98475145476, 370584275964, 1397918543552, 5284861554816
Offset: 1

Views

Author

Jeppe Stig Nielsen, Jun 24 2000

Keywords

Comments

Operation # can be interpreted as NOT AND. The ratio a(n)/A000108(n-1) converges to (2-sqrt(2))/2. Thanks to Soren Galatius Smith

Crossrefs

Programs

  • Mathematica
    f[x_] := (1 - Sqrt[1 - 4*x])/2; CoefficientList[Series[(1 + 2*f[x] - Sqrt[1 + 4*(f[x])^2])/(2*x), {x, 0, 50}], x] (* G. C. Greubel, Jun 10 2016 *)

Formula

G.f.: 1 - (1/2)*(1 - 4*x)^(1/2) - (1/2)*(3 - 2*(1 - 4*x)^(1/2) - 4*x)^(1/2).
G.f.: (1 + 2*C(x) - sqrt(1 + 4*C(x)^2))/2, where C(x) = (1 - sqrt(1 - 4*x))/2 is the g.f. of the Catalan numbers (A000108). - Paul D. Hanna, Jun 10 2016
G.f. A(x) satisfies: A(x) = x + (A(x) - C(x))^2, where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108). - Paul D. Hanna, Jun 11 2016