cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055450 Path-counting array T; each step of a path is (1 right) or (1 up) to a point below line y=x, else (1 right and 1 up) or (1 up) to a point on the line y=x, else (1 left) or (1 up) to a point above line y=x. T(i,j)=number of paths to point (i-j,j), for 1<=j<=i, i >= 1.

Original entry on oeis.org

1, 1, 3, 1, 2, 10, 1, 3, 7, 36, 1, 4, 5, 26, 137, 1, 5, 9, 19, 101, 543, 1, 6, 14, 14, 75, 406, 2219, 1, 7, 20, 28, 56, 305, 1676, 9285, 1, 8, 27, 48, 42, 230, 1270, 7066, 39587, 1, 9, 35, 75, 90, 174, 965, 5390, 30302, 171369, 1, 10, 44, 110, 165, 132, 735, 4120, 23236, 131782, 751236
Offset: 0

Views

Author

Clark Kimberling, May 18 2000

Keywords

Examples

			Triangle begins as:
  1;
  1, 3;
  1, 2, 10;
  1, 3,  7, 36;
  1, 4,  5, 26, 137;
  1, 5,  9, 19, 101, 543;
  1, 6, 14, 14,  75, 406, 2219;
  1, 7, 20, 28,  56, 305, 1676, 9285;
  1, 8, 27, 48,  42, 230, 1270, 7066, 39587;
  ...
T(4,4) defined as T(5,4)+T(3,3) when k=4, T(5,4) already defined when k=3.
		

Crossrefs

Programs

  • Magma
    B:=Binomial; G:=Gamma; F:=Factorial;
    p:= func< n,k,j | B(n-2*k+j-1, j)*G(n-k+j+3/2)/(F(j)*G(n-k+3/2)*B(n-k+j+2, j)) >;
    A030237:= func< n,k | (n-k+1)*Binomial(n+k, k)/(n+1) >;
    function T(n,k) // T = A055450
      if k lt n/2 then return A030237(n-k+1, k);
      else return Round(Catalan(n-k+1)*(&+[p(n,k,j)*(-4)^j: j in [0..n]]));
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Jan 29 2024
    
  • Mathematica
    T[n_, 0]:= 1; T[n_, k_]:= T[n, k]= If[1<=kG. C. Greubel, Jan 29 2024 *)
    T[n_, k_]:= If[kG. C. Greubel, Jan 29 2024 *)
  • SageMath
    def A030237(n,k): return (n-k+1)*binomial(n+k, k)/(n+1)
    def T(n,k): # T = A055450
        if kA030237(n-k+1,k)
        else: return round(catalan_number(n-k+1)*hypergeometric([n-2*k, (3+2*(n-k))/2], [3+n-k], -4))
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 29 2024

Formula

Initial values: T(i, 0)=1 for i >= 0. Recurrence: if 1 <= j < i/2, then T(i, j) = T(i-1, j-1) + T(i-1, j), if j = i/2 then T(2j, j) = T(2j-2, j-1) + T(2j-1, j-1), otherwise T(2j-k, j) = T(2j-k+1, j) + T(2j-k-1, j-1) for j=k, k+1, k+2, ..., for k=1, 2, 3, ...
T(2n, n) = A000108(n) for n >= 0 (Catalan numbers).
T(n, n) = A002212(n+1).
T(n, n-1) = A045868(n).
T(n, k) = A030237(n-k+1, k) for n >= 1, 0 <= k < n/2.
From G. C. Greubel, Jan 29 2024: (Start)
T(n, k) = (n-2*k+2)*binomial(n+1, k)/(n-k+2) for 0 <= k < n/2, otherwise Catalan(n-k +1)*Hypergeometric2F1([n-2*k, (3+2*(n-k))/2], [3+n-k], -4).
Sum_{k=0..n} T(n, k) = A055451(n). (End)