A055452
a(n) = T(n,n-2), array T as in A055450.
Original entry on oeis.org
1, 3, 5, 19, 75, 305, 1270, 5390, 23236, 101480, 448085, 1997115, 8973255, 40602093, 184853055, 846206025, 3892585325, 17984308775, 83417287855, 388297304825, 1813341109825, 8493372326675, 39889629750600
Offset: 2
-
[n le 3 select 2*n-3 else Round(5*HypergeometricSeries2F1(4-n,7/2,5,-4)): n in [2..40]]; // G. C. Greubel, Jan 29 2024
-
Table[If[n<4, 2*n-3, 5*Hypergeometric2F1[4-n,7/2,5,-4]], {n,2,40}] (* G. C. Greubel, Jan 29 2024 *)
-
def A055452(n): return 2*n-3 if n<4 else 5*hypergeometric([4-n,7/2],[5],-4).simplify()
[A055452(n) for n in range(2,41)] # G. C. Greubel, Jan 29 2024
Original entry on oeis.org
1, 6, 20, 48, 90, 132, 561, 2420, 10571, 46672, 207963, 934064, 4224685, 19225588, 87969426, 404479884, 1867924322, 8660317820, 40295911480, 188105782260, 880716750140, 4134823623820, 19461238795225, 91810738725036, 434062054130187, 2056265327125528
Offset: 5
-
[1,6,20,48,90] cat [Floor(132*HypergeometricSeries2F1(10-n,13/2,8,-4)): n in [10..40]]; // G. C. Greubel, Jan 30 2024
-
Join[{1,6,20,48,90}, Table[132*Hypergeometric2F1[10-n,13/2,8,-4], {n, 10, 40}]] (* G. C. Greubel, Jan 30 2024 *)
-
def A055455(n): return (1,6,20,48,90)[n-5] if n<10 else 132*hypergeometric([10-n,13/2],[8],-4).simplify()
[A055455(n) for n in range(5,41)] # G. C. Greubel, Jan 30 2024
Original entry on oeis.org
1, 4, 13, 47, 173, 678, 2735, 11378, 48279, 208410, 911571, 4031919, 17999628, 81000573, 367040404, 1673295419, 7669312343, 35319197637, 163350479756, 758406642839, 3533447414030, 16514820417166, 77412170863861
Offset: 0
-
B:=Binomial; G:=Gamma; F:=Factorial;
p:= func< n,k,j | B(n-2*k+j-1, j)*G(n-k+j+3/2)/(F(j)*G(n-k+3/2)*B(n-k+j+2, j)) >;
f:= func< n,k | (n-k+1)*Binomial(n+k, k)/(n+1) >;
function T(n,k) // T = A055450
if k lt n/2 then return f(n-k+1, k);
else return Round(Catalan(n-k+1)*(&+[p(n,k,j)*(-4)^j: j in [0..n]]));
end if;
end function;
A055451:= func< n | (&+[T(n,k): k in [0..n]]) >;
[A055451(n): n in [0..40]]; // G. C. Greubel, Jan 29 2024
-
T[n_, 0]:= 1; T[n_, k_]:= T[n, k]= If[1<=kA055451[n_]:= A055451[n]= Sum[T[n,k], {k,0,n}];
Table[A055451[n], {n,0,40}] (* G. C. Greubel, Jan 29 2024 *)
-
def f(n,k): return (n-k+1)*binomial(n+k, k)/(n+1)
def T(n,k): # T = A055450
if kA055451(n): return sum(T(n,k) for k in range(n+1))
[A055451(n) for n in range(41)] # G. C. Greubel, Jan 30 2024
A055453
a(n) = T(n,n-3), array T as in A055450.
Original entry on oeis.org
1, 4, 9, 14, 56, 230, 965, 4120, 17846, 78244, 346605, 1549030, 6976140, 31628838, 144250962, 661352970, 3046379300, 14091723450, 65432979080, 304880016970, 1425043805000, 6680031216850, 31396257423925, 147923222356036
Offset: 3
-
[n le 6 select (n-2)^2 else Round(14*HypergeometricSeries2F1(6-n,9/2,6,-4)): n in [3..40]]; // G. C. Greubel, Jan 30 2024
-
Table[If[n<6, (n-2)^2, 14*Hypergeometric2F1[6-n,9/2,6,-4]], {n,3,40}] (* G. C. Greubel, Jan 30 2024 *)
-
def A055453(n): return (n-2)^2 if n<6 else 14*hypergeometric([6-n,9/2],[6],-4).simplify()
[A055453(n) for n in range(3,41)] # G. C. Greubel, Jan 30 2024
Original entry on oeis.org
1, 5, 14, 28, 42, 174, 735, 3155, 13726, 60398, 268361, 1202425, 5427110, 24652698, 112622124, 517102008, 2385026330, 11045344150, 51341255630, 239447037890, 1120163788030, 5254987411850, 24716226207075
Offset: 4
-
[1,5,14,28] cat [Floor(42*HypergeometricSeries2F1(8-n,11/2,7,-4)): n in [8..40]]; // G. C. Greubel, Jan 30 2024
-
Join[{1,5,14,28}, Table[42*Hypergeometric2F1[8-n,11/2,7,-4], {n,8,40}]] (* G. C. Greubel, Jan 30 2024 *)
-
def A055454(n): return (1,5,14,28)[n-4] if n<8 else 42*hypergeometric([8-n,11/2],[7],-4).simplify()
[A055454(n) for n in range(4,41)] # G. C. Greubel, Jan 30 2024
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 4, 5, 1, 1, 7, 6, 7, 1, 1, 10, 13, 8, 9, 1, 1, 16, 17, 21, 10, 11, 1, 24, 30, 26, 31, 12, 13, 1, 1, 38, 42, 52, 37, 43, 14, 15, 1, 1, 59, 69, 69, 84, 50, 57, 16, 17, 1, 1
Offset: 1
First few rows of the triangle are:
1;
1, 1;
3, 1, 1;
4, 5, 1, 1;
7, 6, 7, 1, 1;
10, 13, 8, 9, 1, 1;
16, 17, 21, 10, 11, 1, 1;
24, 30, 26, 31, 12, 13, 1, 1;
38, 42, 52, 37, 43, 14, 15, 1, 1;
...
A045868
Expansion of g.f.: ((1 - x - sqrt(1-6*x+5*x^2))/(2*x))^2.
Original entry on oeis.org
1, 2, 7, 26, 101, 406, 1676, 7066, 30302, 131782, 579867, 2576982, 11550237, 52152330, 237005385, 1083211410, 4975796735, 22960105510, 106377393365, 494674698190, 2308015808015, 10801388134690, 50691017885290, 238503869991926, 1124828963516896, 5316520644648026, 25179670936870021
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- S. J. Cyvin et al., Enumeration and classification of certain polygonal systems representing polycyclic conjugated hydrocarbons: annelated catafusenes, J. Chem. Inform. Comput. Sci., 34 (1994), 1174-1180.
- Emeric Deutsch, Emanuele Munarini, and Simone Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 99.
-
[n le 2 select n else (2*(3*n-2)*Self(n-1) - 5*(n-3)*Self(n-2))/(n+1): n in [1..30]]; // G. C. Greubel, Jan 12 2024
-
a := n->(2/n)*sum(binomial(n,j)*binomial(2*j+1,j-1),j=1..n): 1,seq(a(n),n=1..22);
-
a[n_] := 2*Hypergeometric2F1[ 5/2, 1-n, 4, -4]; a[0] = 1; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Apr 30 2012, after Maple *)
-
a(n)=polcoeff((1-x-sqrt(1-6*x+5*x^2+x^2*O(x^n)))^2/4,n+2)
-
my(x='x+O('x^66)); Vec(((1-x-sqrt(1-6*x+5*x^2))/(2*x))^2) \\ Joerg Arndt, May 04 2013
-
def A045868(n): return 1 if n==0 else (2/n)*sum( binomial(n,j)*binomial(2*j+1,j-1) for j in range(1,n+1))
[A045868(n) for n in range(31)] # G. C. Greubel, Jan 12 2024
Showing 1-7 of 7 results.
Comments