cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A055452 a(n) = T(n,n-2), array T as in A055450.

Original entry on oeis.org

1, 3, 5, 19, 75, 305, 1270, 5390, 23236, 101480, 448085, 1997115, 8973255, 40602093, 184853055, 846206025, 3892585325, 17984308775, 83417287855, 388297304825, 1813341109825, 8493372326675, 39889629750600
Offset: 2

Views

Author

Clark Kimberling, May 18 2000

Keywords

Crossrefs

Programs

  • Magma
    [n le 3 select 2*n-3 else Round(5*HypergeometricSeries2F1(4-n,7/2,5,-4)): n in [2..40]]; // G. C. Greubel, Jan 29 2024
    
  • Mathematica
    Table[If[n<4, 2*n-3, 5*Hypergeometric2F1[4-n,7/2,5,-4]], {n,2,40}] (* G. C. Greubel, Jan 29 2024 *)
  • SageMath
    def A055452(n): return 2*n-3 if n<4 else 5*hypergeometric([4-n,7/2],[5],-4).simplify()
    [A055452(n) for n in range(2,41)] # G. C. Greubel, Jan 29 2024

Formula

a(n) = 5*hypergeometric([4-n,7/2],[5],-4), for n>3. - Peter Luschny, Aug 15 2012

A055455 a(n) = A055450(n, n-5).

Original entry on oeis.org

1, 6, 20, 48, 90, 132, 561, 2420, 10571, 46672, 207963, 934064, 4224685, 19225588, 87969426, 404479884, 1867924322, 8660317820, 40295911480, 188105782260, 880716750140, 4134823623820, 19461238795225, 91810738725036, 434062054130187, 2056265327125528
Offset: 5

Views

Author

Clark Kimberling, May 18 2000

Keywords

Crossrefs

Programs

  • Magma
    [1,6,20,48,90] cat [Floor(132*HypergeometricSeries2F1(10-n,13/2,8,-4)): n in [10..40]]; // G. C. Greubel, Jan 30 2024
    
  • Mathematica
    Join[{1,6,20,48,90}, Table[132*Hypergeometric2F1[10-n,13/2,8,-4], {n, 10, 40}]] (* G. C. Greubel, Jan 30 2024 *)
  • SageMath
    def A055455(n): return (1,6,20,48,90)[n-5] if n<10 else 132*hypergeometric([10-n,13/2],[8],-4).simplify()
    [A055455(n) for n in range(5,41)] # G. C. Greubel, Jan 30 2024

Formula

a(n) = A055450(n, n-5), n >= 5.
a(n) = 132*Hypergeometric2F1([10-n, 13/2], [8], -4), for n >= 10. - G. C. Greubel, Jan 30 2024

Extensions

a(13) corrected and more terms from Sean A. Irvine, Mar 21 2022

A055451 Row sums of array in A055450.

Original entry on oeis.org

1, 4, 13, 47, 173, 678, 2735, 11378, 48279, 208410, 911571, 4031919, 17999628, 81000573, 367040404, 1673295419, 7669312343, 35319197637, 163350479756, 758406642839, 3533447414030, 16514820417166, 77412170863861
Offset: 0

Views

Author

Clark Kimberling, May 18 2000

Keywords

Crossrefs

Programs

  • Magma
    B:=Binomial; G:=Gamma; F:=Factorial;
    p:= func< n,k,j | B(n-2*k+j-1, j)*G(n-k+j+3/2)/(F(j)*G(n-k+3/2)*B(n-k+j+2, j)) >;
    f:= func< n,k | (n-k+1)*Binomial(n+k, k)/(n+1) >;
    function T(n,k) // T = A055450
      if k lt n/2 then return f(n-k+1, k);
      else return Round(Catalan(n-k+1)*(&+[p(n,k,j)*(-4)^j: j in [0..n]]));
      end if;
    end function;
    A055451:= func< n | (&+[T(n,k): k in [0..n]]) >;
    [A055451(n): n in [0..40]]; // G. C. Greubel, Jan 29 2024
    
  • Mathematica
    T[n_, 0]:= 1; T[n_, k_]:= T[n, k]= If[1<=kA055451[n_]:= A055451[n]= Sum[T[n,k], {k,0,n}];
    Table[A055451[n], {n,0,40}] (* G. C. Greubel, Jan 29 2024 *)
  • SageMath
    def f(n,k): return (n-k+1)*binomial(n+k, k)/(n+1)
    def T(n,k): # T = A055450
        if kA055451(n): return sum(T(n,k) for k in range(n+1))
    [A055451(n) for n in range(41)] # G. C. Greubel, Jan 30 2024

Formula

a(n) = Sum_{k=0..n} A055450(n, k). - G. C. Greubel, Jan 29 2024

A055453 a(n) = T(n,n-3), array T as in A055450.

Original entry on oeis.org

1, 4, 9, 14, 56, 230, 965, 4120, 17846, 78244, 346605, 1549030, 6976140, 31628838, 144250962, 661352970, 3046379300, 14091723450, 65432979080, 304880016970, 1425043805000, 6680031216850, 31396257423925, 147923222356036
Offset: 3

Views

Author

Clark Kimberling, May 18 2000

Keywords

Crossrefs

Programs

  • Magma
    [n le 6 select (n-2)^2 else Round(14*HypergeometricSeries2F1(6-n,9/2,6,-4)): n in [3..40]]; // G. C. Greubel, Jan 30 2024
    
  • Mathematica
    Table[If[n<6, (n-2)^2, 14*Hypergeometric2F1[6-n,9/2,6,-4]], {n,3,40}] (* G. C. Greubel, Jan 30 2024 *)
  • SageMath
    def A055453(n): return (n-2)^2 if n<6 else 14*hypergeometric([6-n,9/2],[6],-4).simplify()
    [A055453(n) for n in range(3,41)] # G. C. Greubel, Jan 30 2024

Formula

a(n) = 14*Hypergeometric2F1([6-n, 9/2], [6], -4), for n >= 6 and a(n) = (n-2)^2 for 3 <= n <= 5. - G. C. Greubel, Jan 30 2024

A055454 a(n) = A055450(n, n-4).

Original entry on oeis.org

1, 5, 14, 28, 42, 174, 735, 3155, 13726, 60398, 268361, 1202425, 5427110, 24652698, 112622124, 517102008, 2385026330, 11045344150, 51341255630, 239447037890, 1120163788030, 5254987411850, 24716226207075
Offset: 4

Views

Author

Clark Kimberling, May 18 2000

Keywords

Crossrefs

Programs

  • Magma
    [1,5,14,28] cat [Floor(42*HypergeometricSeries2F1(8-n,11/2,7,-4)): n in [8..40]]; // G. C. Greubel, Jan 30 2024
    
  • Mathematica
    Join[{1,5,14,28}, Table[42*Hypergeometric2F1[8-n,11/2,7,-4], {n,8,40}]] (* G. C. Greubel, Jan 30 2024 *)
  • SageMath
    def A055454(n): return (1,5,14,28)[n-4] if n<8 else 42*hypergeometric([8-n,11/2],[7],-4).simplify()
    [A055454(n) for n in range(4,41)] # G. C. Greubel, Jan 30 2024

Formula

a(n) = A055450(n, n-4).
a(n) = 42*Hypergeometric2F1([8-n, 11/2], [7], -4) for n >= 8. - G. C. Greubel, Jan 30 2024
a(n) ~ 128 * 5^(n - 13/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 09 2025

A133380 A055450 + A030111 - A000012 as infinite lower triangular matrices.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 4, 5, 1, 1, 7, 6, 7, 1, 1, 10, 13, 8, 9, 1, 1, 16, 17, 21, 10, 11, 1, 24, 30, 26, 31, 12, 13, 1, 1, 38, 42, 52, 37, 43, 14, 15, 1, 1, 59, 69, 69, 84, 50, 57, 16, 17, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Oct 28 2007

Keywords

Comments

Row sums = A134508

Examples

			First few rows of the triangle are:
1;
1, 1;
3, 1, 1;
4, 5, 1, 1;
7, 6, 7, 1, 1;
10, 13, 8, 9, 1, 1;
16, 17, 21, 10, 11, 1, 1;
24, 30, 26, 31, 12, 13, 1, 1;
38, 42, 52, 37, 43, 14, 15, 1, 1;
...
		

Crossrefs

A045868 Expansion of g.f.: ((1 - x - sqrt(1-6*x+5*x^2))/(2*x))^2.

Original entry on oeis.org

1, 2, 7, 26, 101, 406, 1676, 7066, 30302, 131782, 579867, 2576982, 11550237, 52152330, 237005385, 1083211410, 4975796735, 22960105510, 106377393365, 494674698190, 2308015808015, 10801388134690, 50691017885290, 238503869991926, 1124828963516896, 5316520644648026, 25179670936870021
Offset: 0

Views

Author

Keywords

Comments

Convolution of A002212 with itself.
Number of skew Dyck paths of semilength n+1 starting with UU. A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps. Example: a(2)=7 because we have UUDDUD, UUDUDD, UUDUDL, UUUDDD, UUUDDL, UUUDLD and UUUDLL. - Emeric Deutsch, May 11 2007
a(n) is also the number of path-pairs (u,v) having the following six properties: 1) the lengths of u and v sum up to 2n, 2) u and v both start at (0,0), 3) (0,0) is the only vertex that u and v have in common, 4) the steps that u can make are (1,0), (0,1) and (0,-1), 5) the steps that v can make are (1,0), (-1,0) and (0,1), 6) if A and B are the termini of u and v, respectively, then B=A+(1,-1). - Svjetlan Feretic, Jun 09 2013

Crossrefs

Cf. A055450.
Essentially the first differences of A002212 and A025238.

Programs

  • Magma
    [n le 2 select n else (2*(3*n-2)*Self(n-1) - 5*(n-3)*Self(n-2))/(n+1): n in [1..30]]; // G. C. Greubel, Jan 12 2024
    
  • Maple
    a := n->(2/n)*sum(binomial(n,j)*binomial(2*j+1,j-1),j=1..n): 1,seq(a(n),n=1..22);
  • Mathematica
    a[n_] := 2*Hypergeometric2F1[ 5/2, 1-n, 4, -4]; a[0] = 1; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Apr 30 2012, after Maple *)
  • PARI
    a(n)=polcoeff((1-x-sqrt(1-6*x+5*x^2+x^2*O(x^n)))^2/4,n+2)
    
  • PARI
    my(x='x+O('x^66)); Vec(((1-x-sqrt(1-6*x+5*x^2))/(2*x))^2) \\ Joerg Arndt, May 04 2013
    
  • SageMath
    def A045868(n): return 1 if n==0 else (2/n)*sum( binomial(n,j)*binomial(2*j+1,j-1) for j in range(1,n+1))
    [A045868(n) for n in range(31)] # G. C. Greubel, Jan 12 2024

Formula

a(n) = (2/n)*Sum_{j=1..n} binomial(n, j)*binomial(2j+1, j-1) for n >= 1.
a(n) = A055450(n, n-1).
D-finite with recurrence: (n+2)*a(n) = (6*n+2)*a(n-1) - (5*n-10)*a(n-2). - Vladeta Jovovic, Jul 16 2004
a(n) = 2*Hypergeometric2F1(5/2, 1-n, 4, -4). - Jean-François Alcover, Apr 30 2012
a(n) ~ 2*5^(n+1/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012
G.f.: 1 - 1/x + Q(0)*(1-x)/x, where Q(k) = 1 + (4*k+1)*x/((1-x)*(k+1) - x*(1-x)*(2*k+2)*(4*k+3)/(x*(8*k+6)+(2*k+3)*(1-x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 14 2013
G.f.: 1/x - 1 - 2*(1-x)/x/( G(0) + 1), where G(k) = 1 + 2*x*(4*k+1)/( (2*k+1)*(1-x) - x*(1-x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1-x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 24 2013

Extensions

More terms from Emeric Deutsch, May 11 2007
Showing 1-7 of 7 results.