A055450
Path-counting array T; each step of a path is (1 right) or (1 up) to a point below line y=x, else (1 right and 1 up) or (1 up) to a point on the line y=x, else (1 left) or (1 up) to a point above line y=x. T(i,j)=number of paths to point (i-j,j), for 1<=j<=i, i >= 1.
Original entry on oeis.org
1, 1, 3, 1, 2, 10, 1, 3, 7, 36, 1, 4, 5, 26, 137, 1, 5, 9, 19, 101, 543, 1, 6, 14, 14, 75, 406, 2219, 1, 7, 20, 28, 56, 305, 1676, 9285, 1, 8, 27, 48, 42, 230, 1270, 7066, 39587, 1, 9, 35, 75, 90, 174, 965, 5390, 30302, 171369, 1, 10, 44, 110, 165, 132, 735, 4120, 23236, 131782, 751236
Offset: 0
Triangle begins as:
1;
1, 3;
1, 2, 10;
1, 3, 7, 36;
1, 4, 5, 26, 137;
1, 5, 9, 19, 101, 543;
1, 6, 14, 14, 75, 406, 2219;
1, 7, 20, 28, 56, 305, 1676, 9285;
1, 8, 27, 48, 42, 230, 1270, 7066, 39587;
...
T(4,4) defined as T(5,4)+T(3,3) when k=4, T(5,4) already defined when k=3.
-
B:=Binomial; G:=Gamma; F:=Factorial;
p:= func< n,k,j | B(n-2*k+j-1, j)*G(n-k+j+3/2)/(F(j)*G(n-k+3/2)*B(n-k+j+2, j)) >;
A030237:= func< n,k | (n-k+1)*Binomial(n+k, k)/(n+1) >;
function T(n,k) // T = A055450
if k lt n/2 then return A030237(n-k+1, k);
else return Round(Catalan(n-k+1)*(&+[p(n,k,j)*(-4)^j: j in [0..n]]));
end if;
end function;
[T(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Jan 29 2024
-
T[n_, 0]:= 1; T[n_, k_]:= T[n, k]= If[1<=kG. C. Greubel, Jan 29 2024 *)
T[n_, k_]:= If[kG. C. Greubel, Jan 29 2024 *)
-
def A030237(n,k): return (n-k+1)*binomial(n+k, k)/(n+1)
def T(n,k): # T = A055450
if kA030237(n-k+1,k)
else: return round(catalan_number(n-k+1)*hypergeometric([n-2*k, (3+2*(n-k))/2], [3+n-k], -4))
flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 29 2024
A371521
G.f. A(x) satisfies A(x) = (1 + x*A(x) / (1-x))^6.
Original entry on oeis.org
1, 6, 57, 614, 7158, 88002, 1123689, 14760024, 198172050, 2707560544, 37522666803, 526190125308, 7452866846847, 106465245105972, 1532129408941797, 22191180837313808, 323243244688652943, 4732225866305323686, 69591395772704207770, 1027547992261749954798
Offset: 0
-
a(n) = 6*sum(k=0, n, binomial(n-1, n-k)*binomial(6*k+5, k)/(5*k+6));
A371517
G.f. A(x) satisfies A(x) = (1 + x*A(x) / (1-x))^4.
Original entry on oeis.org
1, 4, 26, 188, 1459, 11892, 100444, 871528, 7722557, 69590628, 635807180, 5876094308, 54836925779, 516029817620, 4891147100886, 46653935716492, 447490869463145, 4313492172957396, 41763413498670702, 405968522259130636, 3960526930400038404
Offset: 0
-
a(n) = 4*sum(k=0, n, binomial(n-1, n-k)*binomial(4*k+3, k)/(3*k+4));
A371516
G.f. A(x) satisfies A(x) = (1 + x*A(x) / (1-x))^3.
Original entry on oeis.org
1, 3, 15, 82, 477, 2901, 18235, 117555, 773085, 5166478, 34987170, 239570655, 1655933060, 11538839130, 80971109712, 571702698185, 4058556404958, 28951715755830, 207424064434502, 1491898838023884, 10768487956456506, 77977009814421534, 566310026687320290
Offset: 0
-
a(n) = 3*sum(k=0, n, binomial(n-1, n-k)*binomial(3*k+2, k)/(2*k+3));
A371520
G.f. A(x) satisfies A(x) = (1 + x*A(x) / (1-x))^5.
Original entry on oeis.org
1, 5, 40, 360, 3495, 35726, 378965, 4133080, 46059020, 522196465, 6004261226, 69849651025, 820651943130, 9723556336780, 116056250171385, 1394082307995626, 16840510019954835, 204453614350921540, 2493311080293185200, 30528431677508637205, 375155454309681439001
Offset: 0
-
a(n) = 5*sum(k=0, n, binomial(n-1, n-k)*binomial(5*k+4, k)/(4*k+5));
A106534
Sum array of Catalan numbers (A000108) read by upward antidiagonals.
Original entry on oeis.org
1, 2, 1, 5, 3, 2, 15, 10, 7, 5, 51, 36, 26, 19, 14, 188, 137, 101, 75, 56, 42, 731, 543, 406, 305, 230, 174, 132, 2950, 2219, 1676, 1270, 965, 735, 561, 429, 12235, 9285, 7066, 5390, 4120, 3155, 2420, 1859, 1430, 51822, 39587, 30302, 23236, 17846, 13726, 10571, 8151, 6292, 4862
Offset: 0
From _Wolfdieter Lang_, Oct 04 2019: (Start)
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 2 1
2: 5 3 2
3: 15 10 7 5
4: 51 36 26 19 14
5: 188 137 101 75 56 42
6: 731 543 406 305 230 174 132
7: 2950 2219 1676 1270 965 735 561 429
8: 12235 9285 7066 5390 4120 3155 2420 1859 1430
9: 51822 39587 30302 23236 17846 13726 10571 8151 6292 4862
10: 223191 171369 131782 101480 78244 60398 46672 36101 27950 21658 16796
... reformatted and extended.
-------------------------------------------------------------------------
The array A(n, k) begins:
n\k 0 1 2 3 4 5 6 ...
-------------------------------------------
0: 1 1 2 5 14 42 132 ... A000108
1 2 3 7 19 56 174 561 ... A005807
2: 5 10 26 75 230 735 2420 ...
3: 15 36 101 305 965 3155 10571 ...
4: 51 137 406 1270 4120 13726 46672 ...
5: 188 543 1676 5390 17846 60398 207963 ...
... (End)
Cf.
A059346 (Catalan difference array as triangle).
-
function T(n,k)
if k gt n then return 0;
elif k eq n then return Catalan(n);
else return T(n-1, k) + T(n, k+1);
end if; return T;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 18 2021
-
# Uses floating point, precision might have to be adjusted.
C := n -> binomial(2*n,n)/(n+1);
H := (n,k) -> hypergeom([k-n,k+1/2],[k+2],-4);
T := (n,k) -> C(k)*H(n,k);
seq(print(seq(round(evalf(T(n,k),32)),k=0..n)),n=0..7);
# Peter Luschny, Aug 16 2012
-
T[n_, n_] := CatalanNumber[n]; T[n_, k_] /; 0 <= k < n := T[n-1, k] + T[n, k+1]; T[, ] = 0; Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 11 2019 *)
-
def T(n, k) :
if k > n : return 0
if n == k : return binomial(2*n, n)/(n+1)
return T(n-1, k) + T(n, k+1)
A106534 = lambda n,k: T(n, k)
for n in (0..5): [A106534(n,k) for k in (0..n)] # Peter Luschny, Aug 16 2012
A045902
Catafusenes (see reference for precise definition).
Original entry on oeis.org
1, 4, 18, 80, 355, 1580, 7066, 31772, 143645, 652860, 2981910, 13682328, 63046776, 291646860, 1353967250, 6306552800, 29464361530, 138045441260, 648449195350, 3053348997200, 14409512770575, 68143962854836, 322886537205062, 1532716400556220, 7288075248828605, 34710221395625380
Offset: 0
- S. J. Cyvin et al., Enumeration and classification of certain polygonal systems... : annelated catafusenes, J. Chem. Inform. Comput. Sci., 34 (1994), 1174-1180.
-
a := n->(4/n)*sum(binomial(n,j)*binomial(2*j+3,j-1),j=1..n): 1,seq(a(n),n=1..22);
-
Table[SeriesCoefficient[(1-x-Sqrt[1-6*x+5*x^2])^4/(16*x^4),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
-
x='x+O('x^66); Vec((1-x-sqrt(1-6*x+5*x^2))^4/(16*x^4)) \\ Joerg Arndt, May 04 2013
A371583
G.f. satisfies A(x) = ( 1 + x*A(x)^(5/2) / (1 - x) )^2.
Original entry on oeis.org
1, 2, 13, 104, 940, 9166, 94044, 1000602, 10939780, 122161128, 1387361151, 15974899766, 186069556707, 2188416960148, 25953579753464, 310022550197360, 3726709235290628, 45047517497268968, 547217895030263028, 6676784544374859088, 81789906534091716353
Offset: 0
-
a(n, r=2, s=1, t=5, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));
A073149
Triangle of numbers arising in recursive computation of A002212.
Original entry on oeis.org
1, 1, 2, 3, 4, 7, 10, 13, 16, 26, 36, 46, 55, 65, 101, 137, 173, 203, 233, 269, 406, 543, 680, 788, 888, 996, 1133, 1676, 2219, 2762, 3173, 3533, 3893, 4304, 4847, 7066, 9285, 11504, 13133, 14503, 15799, 17169, 18798, 21017, 30302, 39587, 48872, 55529
Offset: 0
T(5,3)=T(5,2)+T(3,0)T(5-2,0)=203+10*3=233.
{1}, {1,2}, {3,4,7}, {10,13,16,26}, {36,46,55,65,101},...
-
T(n,k)=if(k<0 || n<0,0,if(n==0,1,if(k==0,T(n-1,0)+if(n>1,T(n-1,n-1)),T(n,k-1)+T(k,0)*T(n-k,0))))
Showing 1-9 of 9 results.
Comments