cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A055450 Path-counting array T; each step of a path is (1 right) or (1 up) to a point below line y=x, else (1 right and 1 up) or (1 up) to a point on the line y=x, else (1 left) or (1 up) to a point above line y=x. T(i,j)=number of paths to point (i-j,j), for 1<=j<=i, i >= 1.

Original entry on oeis.org

1, 1, 3, 1, 2, 10, 1, 3, 7, 36, 1, 4, 5, 26, 137, 1, 5, 9, 19, 101, 543, 1, 6, 14, 14, 75, 406, 2219, 1, 7, 20, 28, 56, 305, 1676, 9285, 1, 8, 27, 48, 42, 230, 1270, 7066, 39587, 1, 9, 35, 75, 90, 174, 965, 5390, 30302, 171369, 1, 10, 44, 110, 165, 132, 735, 4120, 23236, 131782, 751236
Offset: 0

Views

Author

Clark Kimberling, May 18 2000

Keywords

Examples

			Triangle begins as:
  1;
  1, 3;
  1, 2, 10;
  1, 3,  7, 36;
  1, 4,  5, 26, 137;
  1, 5,  9, 19, 101, 543;
  1, 6, 14, 14,  75, 406, 2219;
  1, 7, 20, 28,  56, 305, 1676, 9285;
  1, 8, 27, 48,  42, 230, 1270, 7066, 39587;
  ...
T(4,4) defined as T(5,4)+T(3,3) when k=4, T(5,4) already defined when k=3.
		

Crossrefs

Programs

  • Magma
    B:=Binomial; G:=Gamma; F:=Factorial;
    p:= func< n,k,j | B(n-2*k+j-1, j)*G(n-k+j+3/2)/(F(j)*G(n-k+3/2)*B(n-k+j+2, j)) >;
    A030237:= func< n,k | (n-k+1)*Binomial(n+k, k)/(n+1) >;
    function T(n,k) // T = A055450
      if k lt n/2 then return A030237(n-k+1, k);
      else return Round(Catalan(n-k+1)*(&+[p(n,k,j)*(-4)^j: j in [0..n]]));
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Jan 29 2024
    
  • Mathematica
    T[n_, 0]:= 1; T[n_, k_]:= T[n, k]= If[1<=kG. C. Greubel, Jan 29 2024 *)
    T[n_, k_]:= If[kG. C. Greubel, Jan 29 2024 *)
  • SageMath
    def A030237(n,k): return (n-k+1)*binomial(n+k, k)/(n+1)
    def T(n,k): # T = A055450
        if kA030237(n-k+1,k)
        else: return round(catalan_number(n-k+1)*hypergeometric([n-2*k, (3+2*(n-k))/2], [3+n-k], -4))
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 29 2024

Formula

Initial values: T(i, 0)=1 for i >= 0. Recurrence: if 1 <= j < i/2, then T(i, j) = T(i-1, j-1) + T(i-1, j), if j = i/2 then T(2j, j) = T(2j-2, j-1) + T(2j-1, j-1), otherwise T(2j-k, j) = T(2j-k+1, j) + T(2j-k-1, j-1) for j=k, k+1, k+2, ..., for k=1, 2, 3, ...
T(2n, n) = A000108(n) for n >= 0 (Catalan numbers).
T(n, n) = A002212(n+1).
T(n, n-1) = A045868(n).
T(n, k) = A030237(n-k+1, k) for n >= 1, 0 <= k < n/2.
From G. C. Greubel, Jan 29 2024: (Start)
T(n, k) = (n-2*k+2)*binomial(n+1, k)/(n-k+2) for 0 <= k < n/2, otherwise Catalan(n-k +1)*Hypergeometric2F1([n-2*k, (3+2*(n-k))/2], [3+n-k], -4).
Sum_{k=0..n} T(n, k) = A055451(n). (End)

A371521 G.f. A(x) satisfies A(x) = (1 + x*A(x) / (1-x))^6.

Original entry on oeis.org

1, 6, 57, 614, 7158, 88002, 1123689, 14760024, 198172050, 2707560544, 37522666803, 526190125308, 7452866846847, 106465245105972, 1532129408941797, 22191180837313808, 323243244688652943, 4732225866305323686, 69591395772704207770, 1027547992261749954798
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 6*sum(k=0, n, binomial(n-1, n-k)*binomial(6*k+5, k)/(5*k+6));

Formula

a(n) = 6 * Sum_{k=0..n} binomial(n-1,n-k) * binomial(6*k+5,k)/(5*k+6) = Sum_{k=0..n} binomial(n-1,n-k) * binomial(6*k+6,k)/(k+1).
G.f.: A(x) = B(x)^6 where B(x) is the g.f. of A349333.

A371517 G.f. A(x) satisfies A(x) = (1 + x*A(x) / (1-x))^4.

Original entry on oeis.org

1, 4, 26, 188, 1459, 11892, 100444, 871528, 7722557, 69590628, 635807180, 5876094308, 54836925779, 516029817620, 4891147100886, 46653935716492, 447490869463145, 4313492172957396, 41763413498670702, 405968522259130636, 3960526930400038404
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 4*sum(k=0, n, binomial(n-1, n-k)*binomial(4*k+3, k)/(3*k+4));

Formula

a(n) = 4 * Sum_{k=0..n} binomial(n-1,n-k) * binomial(4*k+3,k)/(3*k+4) = Sum_{k=0..n} binomial(n-1,n-k) * binomial(4*k+4,k)/(k+1).
G.f.: A(x) = B(x)^4 where B(x) is the g.f. of A349331.

A371516 G.f. A(x) satisfies A(x) = (1 + x*A(x) / (1-x))^3.

Original entry on oeis.org

1, 3, 15, 82, 477, 2901, 18235, 117555, 773085, 5166478, 34987170, 239570655, 1655933060, 11538839130, 80971109712, 571702698185, 4058556404958, 28951715755830, 207424064434502, 1491898838023884, 10768487956456506, 77977009814421534, 566310026687320290
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3*sum(k=0, n, binomial(n-1, n-k)*binomial(3*k+2, k)/(2*k+3));

Formula

a(n) = 3 * Sum_{k=0..n} binomial(n-1,n-k) * binomial(3*k+2,k)/(2*k+3) = Sum_{k=0..n} binomial(n-1,n-k) * binomial(3*k+3,k)/(k+1).
G.f.: A(x) = B(x)^3 where B(x) is the g.f. of A307678.

A371520 G.f. A(x) satisfies A(x) = (1 + x*A(x) / (1-x))^5.

Original entry on oeis.org

1, 5, 40, 360, 3495, 35726, 378965, 4133080, 46059020, 522196465, 6004261226, 69849651025, 820651943130, 9723556336780, 116056250171385, 1394082307995626, 16840510019954835, 204453614350921540, 2493311080293185200, 30528431677508637205, 375155454309681439001
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 5*sum(k=0, n, binomial(n-1, n-k)*binomial(5*k+4, k)/(4*k+5));

Formula

a(n) = 5 * Sum_{k=0..n} binomial(n-1,n-k) * binomial(5*k+4,k)/(4*k+5) = Sum_{k=0..n} binomial(n-1,n-k) * binomial(5*k+5,k)/(k+1).
G.f.: A(x) = B(x)^5 where B(x) is the g.f. of A349332.

A106534 Sum array of Catalan numbers (A000108) read by upward antidiagonals.

Original entry on oeis.org

1, 2, 1, 5, 3, 2, 15, 10, 7, 5, 51, 36, 26, 19, 14, 188, 137, 101, 75, 56, 42, 731, 543, 406, 305, 230, 174, 132, 2950, 2219, 1676, 1270, 965, 735, 561, 429, 12235, 9285, 7066, 5390, 4120, 3155, 2420, 1859, 1430, 51822, 39587, 30302, 23236, 17846, 13726, 10571, 8151, 6292, 4862
Offset: 0

Views

Author

Philippe Deléham, May 30 2005

Keywords

Comments

The underlying array A is A(n, k) = Sum_{j=0..n} binomial(n, j)*A000108(k+j), n >= 0, k>= 0. See the example section. - Wolfdieter Lang, Oct 04 2019

Examples

			From _Wolfdieter Lang_, Oct 04 2019: (Start)
The triangle T(n, k) begins:
n\k      0      1      2      3     4     5     6     7     8     9    10 ...
0:       1
1:       2      1
2:       5      3      2
3:      15     10      7      5
4:      51     36     26     19    14
5:     188    137    101     75    56    42
6:     731    543    406    305   230   174   132
7:    2950   2219   1676   1270   965   735   561   429
8:   12235   9285   7066   5390  4120  3155  2420  1859  1430
9:   51822  39587  30302  23236 17846 13726 10571  8151  6292  4862
10: 223191 171369 131782 101480 78244 60398 46672 36101 27950 21658 16796
... reformatted and extended.
-------------------------------------------------------------------------
The array A(n, k) begins:
n\k  0   1    2    3     4     5      6 ...
-------------------------------------------
0:   1   1    2    5    14    42    132 ... A000108
1    2   3    7   19    56   174    561 ... A005807
2:   5  10   26   75   230   735   2420 ...
3:  15  36  101  305   965  3155  10571 ...
4:  51 137  406 1270  4120 13726  46672 ...
5: 188 543 1676 5390 17846 60398 207963 ...
... (End)
		

Crossrefs

Columns: A007317, A002212, see also A045868, A055452-A055455.
Diagonals: A000108, A005807.
Cf. A059346 (Catalan difference array as triangle).

Programs

  • Magma
    function T(n,k)
      if k gt n then return 0;
      elif k eq n then return Catalan(n);
      else return T(n-1, k) + T(n, k+1);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 18 2021
  • Maple
    # Uses floating point, precision might have to be adjusted.
    C := n -> binomial(2*n,n)/(n+1);
    H := (n,k) -> hypergeom([k-n,k+1/2],[k+2],-4);
    T := (n,k) -> C(k)*H(n,k);
    seq(print(seq(round(evalf(T(n,k),32)),k=0..n)),n=0..7);
    # Peter Luschny, Aug 16 2012
  • Mathematica
    T[n_, n_] := CatalanNumber[n]; T[n_, k_] /; 0 <= k < n := T[n-1, k] + T[n, k+1]; T[, ] = 0; Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 11 2019 *)
  • Sage
    def T(n, k) :
        if k > n : return 0
        if n == k : return binomial(2*n, n)/(n+1)
        return T(n-1, k) + T(n, k+1)
    A106534 = lambda n,k: T(n, k)
    for n in (0..5): [A106534(n,k) for k in (0..n)] # Peter Luschny, Aug 16 2012
    

Formula

T(n, k) = 0 if k > n; T(n, n) = A000108(n); T(n, k) = T(n-1, k) + T(n, k+1) if 0 <= k < n.
T(n, k) = binomial(2*k,k)/(k+1)*hypergeometric([k-n, k+1/2], [k+2], -4). - Peter Luschny, Aug 16 2012
T(n, k) = A(n-k, k) = Sum_{j=0..n-k} binomial(n-k, j)*A000108(k+j), n >= 0, k = 0..n. - Wolfdieter Lang, Oct 03 2019
G.f.: (sqrt(1-4*x*y)-sqrt((5*x-1)/(x-1)))/(2*x*(x*y-y+1)). - Vladimir Kruchinin, Jan 12 2024

A045902 Catafusenes (see reference for precise definition).

Original entry on oeis.org

1, 4, 18, 80, 355, 1580, 7066, 31772, 143645, 652860, 2981910, 13682328, 63046776, 291646860, 1353967250, 6306552800, 29464361530, 138045441260, 648449195350, 3053348997200, 14409512770575, 68143962854836, 322886537205062, 1532716400556220, 7288075248828605, 34710221395625380
Offset: 0

Views

Author

Keywords

Comments

4-fold convolution of A002212. Convolution of A045868 with itself. - Emeric Deutsch, Mar 13 2004

References

  • S. J. Cyvin et al., Enumeration and classification of certain polygonal systems... : annelated catafusenes, J. Chem. Inform. Comput. Sci., 34 (1994), 1174-1180.

Crossrefs

Programs

  • Maple
    a := n->(4/n)*sum(binomial(n,j)*binomial(2*j+3,j-1),j=1..n): 1,seq(a(n),n=1..22);
  • Mathematica
    Table[SeriesCoefficient[(1-x-Sqrt[1-6*x+5*x^2])^4/(16*x^4),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
  • PARI
    x='x+O('x^66); Vec((1-x-sqrt(1-6*x+5*x^2))^4/(16*x^4)) \\ Joerg Arndt, May 04 2013

Formula

G.f.: (1 - x - sqrt(1-6*x+5*x^2))^4/(16*x^4). - Emeric Deutsch, Mar 13 2004
a(n) = (4/n)*Sum_{j=1..n} binomial(n, j)*binomial(2j+3, j-1) for n >= 1. - Emeric Deutsch, Mar 25 2004
Recurrence: (n+1)*(n+4)*a(n) = (6*n^2+19*n+19)*a(n-1) - 5*(n-2)*(n+2)*a(n-2). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ 16*5^(n+1/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012

Extensions

More terms from Emeric Deutsch, Mar 13 2004

A371583 G.f. satisfies A(x) = ( 1 + x*A(x)^(5/2) / (1 - x) )^2.

Original entry on oeis.org

1, 2, 13, 104, 940, 9166, 94044, 1000602, 10939780, 122161128, 1387361151, 15974899766, 186069556707, 2188416960148, 25953579753464, 310022550197360, 3726709235290628, 45047517497268968, 547217895030263028, 6676784544374859088, 81789906534091716353
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=1, t=5, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

a(n) = 2 * Sum_{k=0..n} binomial(5*k+2,k) * binomial(n-1,n-k)/(5*k+2).
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A349332.

A073149 Triangle of numbers arising in recursive computation of A002212.

Original entry on oeis.org

1, 1, 2, 3, 4, 7, 10, 13, 16, 26, 36, 46, 55, 65, 101, 137, 173, 203, 233, 269, 406, 543, 680, 788, 888, 996, 1133, 1676, 2219, 2762, 3173, 3533, 3893, 4304, 4847, 7066, 9285, 11504, 13133, 14503, 15799, 17169, 18798, 21017, 30302, 39587, 48872, 55529
Offset: 0

Views

Author

Paul D. Hanna, Jul 18 2002

Keywords

Comments

Related to restricted hexagonal polyominoes with n cells (A002212) and catafusenes (A045868).
Only T(n,k) for 0<=k<=n are listed since T(n,k)=T(n,n) if k>n.

Examples

			T(5,3)=T(5,2)+T(3,0)T(5-2,0)=203+10*3=233.
{1}, {1,2}, {3,4,7}, {10,13,16,26}, {36,46,55,65,101},...
		

Crossrefs

T(n, 0)=A002212(n). T(n, n)=A045868(n).

Programs

  • PARI
    T(n,k)=if(k<0 || n<0,0,if(n==0,1,if(k==0,T(n-1,0)+if(n>1,T(n-1,n-1)),T(n,k-1)+T(k,0)*T(n-k,0))))

Formula

G.f.: Sum_{n>=0, k>=0} T(n, k)*y^k*x^n = A(x)*A(xy)/(1-y) where A(x) is g.f. of A002212.
T(0, k)=T(1, 0)=1. T(n+1, 0)=T(n, 0)+T(n, n), n>0. T(n, k)=T(n, k-1)+T(k, 0)T(n-k, 0), k>0. T(n, k)=T(n, n), k>n.
Showing 1-9 of 9 results.