cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A055450 Path-counting array T; each step of a path is (1 right) or (1 up) to a point below line y=x, else (1 right and 1 up) or (1 up) to a point on the line y=x, else (1 left) or (1 up) to a point above line y=x. T(i,j)=number of paths to point (i-j,j), for 1<=j<=i, i >= 1.

Original entry on oeis.org

1, 1, 3, 1, 2, 10, 1, 3, 7, 36, 1, 4, 5, 26, 137, 1, 5, 9, 19, 101, 543, 1, 6, 14, 14, 75, 406, 2219, 1, 7, 20, 28, 56, 305, 1676, 9285, 1, 8, 27, 48, 42, 230, 1270, 7066, 39587, 1, 9, 35, 75, 90, 174, 965, 5390, 30302, 171369, 1, 10, 44, 110, 165, 132, 735, 4120, 23236, 131782, 751236
Offset: 0

Views

Author

Clark Kimberling, May 18 2000

Keywords

Examples

			Triangle begins as:
  1;
  1, 3;
  1, 2, 10;
  1, 3,  7, 36;
  1, 4,  5, 26, 137;
  1, 5,  9, 19, 101, 543;
  1, 6, 14, 14,  75, 406, 2219;
  1, 7, 20, 28,  56, 305, 1676, 9285;
  1, 8, 27, 48,  42, 230, 1270, 7066, 39587;
  ...
T(4,4) defined as T(5,4)+T(3,3) when k=4, T(5,4) already defined when k=3.
		

Crossrefs

Programs

  • Magma
    B:=Binomial; G:=Gamma; F:=Factorial;
    p:= func< n,k,j | B(n-2*k+j-1, j)*G(n-k+j+3/2)/(F(j)*G(n-k+3/2)*B(n-k+j+2, j)) >;
    A030237:= func< n,k | (n-k+1)*Binomial(n+k, k)/(n+1) >;
    function T(n,k) // T = A055450
      if k lt n/2 then return A030237(n-k+1, k);
      else return Round(Catalan(n-k+1)*(&+[p(n,k,j)*(-4)^j: j in [0..n]]));
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Jan 29 2024
    
  • Mathematica
    T[n_, 0]:= 1; T[n_, k_]:= T[n, k]= If[1<=kG. C. Greubel, Jan 29 2024 *)
    T[n_, k_]:= If[kG. C. Greubel, Jan 29 2024 *)
  • SageMath
    def A030237(n,k): return (n-k+1)*binomial(n+k, k)/(n+1)
    def T(n,k): # T = A055450
        if kA030237(n-k+1,k)
        else: return round(catalan_number(n-k+1)*hypergeometric([n-2*k, (3+2*(n-k))/2], [3+n-k], -4))
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 29 2024

Formula

Initial values: T(i, 0)=1 for i >= 0. Recurrence: if 1 <= j < i/2, then T(i, j) = T(i-1, j-1) + T(i-1, j), if j = i/2 then T(2j, j) = T(2j-2, j-1) + T(2j-1, j-1), otherwise T(2j-k, j) = T(2j-k+1, j) + T(2j-k-1, j-1) for j=k, k+1, k+2, ..., for k=1, 2, 3, ...
T(2n, n) = A000108(n) for n >= 0 (Catalan numbers).
T(n, n) = A002212(n+1).
T(n, n-1) = A045868(n).
T(n, k) = A030237(n-k+1, k) for n >= 1, 0 <= k < n/2.
From G. C. Greubel, Jan 29 2024: (Start)
T(n, k) = (n-2*k+2)*binomial(n+1, k)/(n-k+2) for 0 <= k < n/2, otherwise Catalan(n-k +1)*Hypergeometric2F1([n-2*k, (3+2*(n-k))/2], [3+n-k], -4).
Sum_{k=0..n} T(n, k) = A055451(n). (End)

A055452 a(n) = T(n,n-2), array T as in A055450.

Original entry on oeis.org

1, 3, 5, 19, 75, 305, 1270, 5390, 23236, 101480, 448085, 1997115, 8973255, 40602093, 184853055, 846206025, 3892585325, 17984308775, 83417287855, 388297304825, 1813341109825, 8493372326675, 39889629750600
Offset: 2

Views

Author

Clark Kimberling, May 18 2000

Keywords

Crossrefs

Programs

  • Magma
    [n le 3 select 2*n-3 else Round(5*HypergeometricSeries2F1(4-n,7/2,5,-4)): n in [2..40]]; // G. C. Greubel, Jan 29 2024
    
  • Mathematica
    Table[If[n<4, 2*n-3, 5*Hypergeometric2F1[4-n,7/2,5,-4]], {n,2,40}] (* G. C. Greubel, Jan 29 2024 *)
  • SageMath
    def A055452(n): return 2*n-3 if n<4 else 5*hypergeometric([4-n,7/2],[5],-4).simplify()
    [A055452(n) for n in range(2,41)] # G. C. Greubel, Jan 29 2024

Formula

a(n) = 5*hypergeometric([4-n,7/2],[5],-4), for n>3. - Peter Luschny, Aug 15 2012

A055455 a(n) = A055450(n, n-5).

Original entry on oeis.org

1, 6, 20, 48, 90, 132, 561, 2420, 10571, 46672, 207963, 934064, 4224685, 19225588, 87969426, 404479884, 1867924322, 8660317820, 40295911480, 188105782260, 880716750140, 4134823623820, 19461238795225, 91810738725036, 434062054130187, 2056265327125528
Offset: 5

Views

Author

Clark Kimberling, May 18 2000

Keywords

Crossrefs

Programs

  • Magma
    [1,6,20,48,90] cat [Floor(132*HypergeometricSeries2F1(10-n,13/2,8,-4)): n in [10..40]]; // G. C. Greubel, Jan 30 2024
    
  • Mathematica
    Join[{1,6,20,48,90}, Table[132*Hypergeometric2F1[10-n,13/2,8,-4], {n, 10, 40}]] (* G. C. Greubel, Jan 30 2024 *)
  • SageMath
    def A055455(n): return (1,6,20,48,90)[n-5] if n<10 else 132*hypergeometric([10-n,13/2],[8],-4).simplify()
    [A055455(n) for n in range(5,41)] # G. C. Greubel, Jan 30 2024

Formula

a(n) = A055450(n, n-5), n >= 5.
a(n) = 132*Hypergeometric2F1([10-n, 13/2], [8], -4), for n >= 10. - G. C. Greubel, Jan 30 2024

Extensions

a(13) corrected and more terms from Sean A. Irvine, Mar 21 2022

A055451 Row sums of array in A055450.

Original entry on oeis.org

1, 4, 13, 47, 173, 678, 2735, 11378, 48279, 208410, 911571, 4031919, 17999628, 81000573, 367040404, 1673295419, 7669312343, 35319197637, 163350479756, 758406642839, 3533447414030, 16514820417166, 77412170863861
Offset: 0

Views

Author

Clark Kimberling, May 18 2000

Keywords

Crossrefs

Programs

  • Magma
    B:=Binomial; G:=Gamma; F:=Factorial;
    p:= func< n,k,j | B(n-2*k+j-1, j)*G(n-k+j+3/2)/(F(j)*G(n-k+3/2)*B(n-k+j+2, j)) >;
    f:= func< n,k | (n-k+1)*Binomial(n+k, k)/(n+1) >;
    function T(n,k) // T = A055450
      if k lt n/2 then return f(n-k+1, k);
      else return Round(Catalan(n-k+1)*(&+[p(n,k,j)*(-4)^j: j in [0..n]]));
      end if;
    end function;
    A055451:= func< n | (&+[T(n,k): k in [0..n]]) >;
    [A055451(n): n in [0..40]]; // G. C. Greubel, Jan 29 2024
    
  • Mathematica
    T[n_, 0]:= 1; T[n_, k_]:= T[n, k]= If[1<=kA055451[n_]:= A055451[n]= Sum[T[n,k], {k,0,n}];
    Table[A055451[n], {n,0,40}] (* G. C. Greubel, Jan 29 2024 *)
  • SageMath
    def f(n,k): return (n-k+1)*binomial(n+k, k)/(n+1)
    def T(n,k): # T = A055450
        if kA055451(n): return sum(T(n,k) for k in range(n+1))
    [A055451(n) for n in range(41)] # G. C. Greubel, Jan 30 2024

Formula

a(n) = Sum_{k=0..n} A055450(n, k). - G. C. Greubel, Jan 29 2024

A055453 a(n) = T(n,n-3), array T as in A055450.

Original entry on oeis.org

1, 4, 9, 14, 56, 230, 965, 4120, 17846, 78244, 346605, 1549030, 6976140, 31628838, 144250962, 661352970, 3046379300, 14091723450, 65432979080, 304880016970, 1425043805000, 6680031216850, 31396257423925, 147923222356036
Offset: 3

Views

Author

Clark Kimberling, May 18 2000

Keywords

Crossrefs

Programs

  • Magma
    [n le 6 select (n-2)^2 else Round(14*HypergeometricSeries2F1(6-n,9/2,6,-4)): n in [3..40]]; // G. C. Greubel, Jan 30 2024
    
  • Mathematica
    Table[If[n<6, (n-2)^2, 14*Hypergeometric2F1[6-n,9/2,6,-4]], {n,3,40}] (* G. C. Greubel, Jan 30 2024 *)
  • SageMath
    def A055453(n): return (n-2)^2 if n<6 else 14*hypergeometric([6-n,9/2],[6],-4).simplify()
    [A055453(n) for n in range(3,41)] # G. C. Greubel, Jan 30 2024

Formula

a(n) = 14*Hypergeometric2F1([6-n, 9/2], [6], -4), for n >= 6 and a(n) = (n-2)^2 for 3 <= n <= 5. - G. C. Greubel, Jan 30 2024
Showing 1-5 of 5 results.