cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055491 Smallest square divisible by n divided by largest square which divides n.

Original entry on oeis.org

1, 4, 9, 1, 25, 36, 49, 4, 1, 100, 121, 9, 169, 196, 225, 1, 289, 4, 361, 25, 441, 484, 529, 36, 1, 676, 9, 49, 841, 900, 961, 4, 1089, 1156, 1225, 1, 1369, 1444, 1521, 100, 1681, 1764, 1849, 121, 25, 2116, 2209, 9, 1, 4, 2601, 169, 2809, 36, 3025, 196, 3249, 3364
Offset: 1

Views

Author

Henry Bottomley, Jun 28 2000

Keywords

Examples

			a(12) = 36/4 = 9.
		

Crossrefs

Programs

  • Haskell
    a055491 = (^ 2) . a007913  -- Reinhard Zumkeller, Jul 23 2014
    
  • Mathematica
    With[{sqs=Range[100]^2},Table[SelectFirst[sqs,Divisible[#,n]&]/ SelectFirst[ Reverse[sqs],Divisible[n,#]&],{n,60}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 18 2018 *)
    f[p_, e_] := p^(2 * Mod[e, 2]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 07 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^(2*(f[i,2]%2)));} \\ Amiram Eldar, Oct 27 2022

Formula

If n is written as Product(Pj^Ej) then a(n) = Product(Pj^(2*(Ej mod 2))).
a(n) = A053143(n)/A008833(n) = A007913(n)^2 = (A019554(n)/A000188(n))^2 = A000290(n)/A008833(n)^2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(6)/(3*zeta(2))) = 2*Pi^4/945 = 0.206156... . - Amiram Eldar, Oct 27 2022
Dirichlet g.f.: zeta(s-2) * zeta(2*s) / zeta(2*s-4). - Amiram Eldar, Sep 16 2023